
A GENERAL AUTO-TUNING FRAMEWORK
FOR SOFTWARE PERFORMANCE OPTIMISATION

BEN SPENCER

Balliol College, University of Oxford

Third Year Project Report

Trinity Term 2011

Thanks to my supervisors Professor Mike Giles and Dr. Alastair Donaldson.

Abstract

This report presents a new general purpose framework for automatically tuning
program parameters without resorting to a brute-force approach.

It is difficult, even for the experienced programmer, to choose optimal set-
tings for many program parameters. The rise of GPUs as a widely available
parallel programming platform has further highlighted the importance of auto-
matic tuning of program parameters in modern software development. Although
the design and development of the system is driven by the problems associated
with parallel GPU programming, its general nature makes it applicable not
only to other parallel programming architectures, but also to many unrelated
software development problems.

Independence between parameters can be exploited to significantly reduce
the number of tests which need to be run and therefore the amount of time re-
quired for tuning. Testing has confirmed the system’s effectiveness—it is faster
and more convenient than hand tuning or brute-force auto-tuning, yet still guar-
antees to find optimal settings for the program’s parameters.

The system has already been used in OeRC (Oxford e-Research Centre) to
provide tuning results which were presented at the Many-Core and Reconfig-
urable Supercomputing Conference 2011 [13] and are to be included in a forth-
coming paper for the Journal of Parallel and Distributed Computing [12]. These
results are described in Section 4.3.

Contents

1 Introduction 1
1.1 Auto-Tuning . 1

Importance of Auto-Tuning . 1
Existing Software Tuning . 2

1.2 GPU Programming . 3
GPU Architecture . 3
Parallelising a Problem . 4
Non-Portable Performance . 4
Block Size Choice . 5

1.3 Feasibility of Auto-Tuning . 6
Scaling Optimisations . 6
Running Time . 6

1.4 Developing an Auto-Tuning Framework 8
Objectives . 8

2 System Requirements 9
2.1 Usability and Effectiveness . 9
2.2 Operation . 9

Input . 10
Generality . 10
Choice of Language . 10
Compilation, Execution and Testing 10
Figures of Merit . 11
Output . 11
Testing Accuracy . 11

2.3 Variable Independence . 12

3 Design 13
3.1 Overview . 13

Problem Breakdown . 13
Modules . 14

3.2 The Variable Tree Mini-Language 15
Language Description . 15
Parser Generation . 17

3.3 The Optimisation Algorithm . 18
Algorithm Design . 18
Notation . 20
Assumptions . 20
Empty Tree Nodes . 21

Continual Optimisation . 21
Memoization . 21
An Example Execution . 22
Correctness . 24
Complexity . 25

3.4 Alternative Algorithm Designs 26
A Polynomial-Time Algorithm 26
An Approximation Algorithm 27

4 Testing 29
4.1 Development . 30

Sample Test Generation . 30
Results . 30

4.2 Initial Testing . 32
Strategy . 32
Results . 33
Analysis . 34
Conclusion . 35

4.3 Hardware Tuning . 38
Strategy . 38
Results . 39
Analysis . 40
Conclusion . 41

4.4 In-Depth Tuning . 54
Strategy . 54
Results . 54
Analysis . 55
Conclusion . 55

5 Conclusions 59
5.1 Testing Results . 59
5.2 Limitations . 60

Running Time . 60
Scope . 60
Programmer Education . 60

5.3 Future Work . 60
Variable Independence . 60
Testing in Parallel . 60
Optimisation Methods . 61
Run-Time Tuning . 61

5.4 Assessment . 61

References 62

Source Code Listing 64

1
Introduction

This chapter presents some of the problems I am aiming to solve and explains
why auto-tuning is an important and appropriate solution.

My report focuses on the problems encountered in GPU programming, as
that is the context in which the system was developed. The ideas discussed are
applicable to many other areas, but for concreteness, the project is presented in
terms of parallel programming on GPUs.

1.1 Auto-Tuning
Auto-tuning is the process of automatically choosing settings for a program’s
parameters, usually with the aim of improving its running time. These param-
eters may determine anything from compiler optimisations to the control flow
of the program.

Importance of Auto-Tuning
Often, an expert programmer will be able to determine a parameter’s optimal
value. However, most programmers will not typically have in-depth knowledge
of the hardware architecture underlying their programs, and knowing how a
program will be executed is increasingly difficult in modern systems, especially
those which are highly parallel. Auto-tuning helps programmers to get the best
possible performance, despite hardware being complex and difficult to predict.

Auto-tuning also has a place in parallel computing frameworks such as
OP2 [11], which should provide portability across a variety of different paral-
lel hardware architectures, without sacrificing performance. If such frameworks

1

make use of auto-tuning, programmers could expect optimal performance from
their programs without being experts in parallelising algorithms or having in-
depth knowledge of the many target hardware platforms. This makes parallel
computing more accessible to scientists without a parallel programming back-
ground.

Existing Software Tuning
Individuals wishing to choose good parameter values for their programs typi-
cally tune them by hand—manually testing various settings for each variable.
Sometimes, simple shell scripts are created (for example Figure 1.1) which per-
form a brute-force search of all possible valuations. These scripts work well for
small parameter ranges and are easy to use, but are typically purpose-built and
hard to adapt for other applications [8]. For large parameter ranges, brute-force
auto-tuning is very slow.

Some auto-tuning systems exist already, mainly in high-performance and sci-
entific computing libraries. They tend to tune once when installed to determine
the best settings and optimisations for the hardware they are running on. This
approach is appropriate when the library will be used for a variety of problems
and should provide good performance for all of them. These systems are clearly
very application specific.

ATLAS [24] is a Linear Algebra library providing BLAS and some LAPACK
routines. The system provides portable performance across a range of CPU
architectures by using a database of precomputed optimisations for known ar-
chitectures or by auto-tuning for new architectures. This auto-tuning is used to
choose optimisations which are effective for a particular CPU. This install-time
tuning uses a set of sample tests of the linear algebra routines. The tests are
likely to be very similar to actual use, making this an effective way to choose
optimisations——the tuning gives comparable results to carefully hand-tuned,
machine-specific libraries. PHiPAC [6] and OSKI [22] use similar techniques.

FFTW [9] and NukadaFFT [17] provide FFT (Fast Fourier Transform) im-
plementations which use auto-tuning to improve performance. FFTW is a
CPU implementation which uses auto-tuning to construct good execution plans.
NukadaFFT runs on GPUs using CUDA and uses auto-tuning to choose various

script_cuda.cu

1 for i in 64 128 256 512 1024; do
2 echo "PARTITION SIZE = $i";
3 for j in 64 128 256 512 1024; do
4 echo "BLOCK SIZE = $j ‘./airfoil_cuda OP_BLOCK_SIZE=$j OP_PART_SIZE=$i ‘";
5 echo "++";
6 done
7 echo "==";
8 echo " ";
9 done

Figure 1.1: This is an example of a small shell script used in OeRC. It is
used for brute-force tuning of the airfoil simulation discussed in Section 4.3.

2

GPU optimisations including data-padding, number of parallel thread blocks
and ordering of data. SPIRAL [25] is another auto-tuning based digital signal
processing library.

Compiler-based auto-tuning is also the focus of much research, (for exam-
ple [4], [20] and [26]). These systems typically test various compiler-level opti-
misations, such as loop-unrolling, to find the best for a particular program.

My project’s approach is slightly different, providing a general auto-tuning
system applicable to any software development. Focusing on problem-by-problem
tuning allows the use of optimisations which are useful in specific cases but not
in general. This is advantageous in programs such as simulations, where the
type of computation required is consistent within a problem but not necessarily
between different problems. The aim is for complete generality—the system
should be able to help a programmer on any platform to improve performance
on unknown hardware.

FFTW goes some way toward this idea of problem-by-problem optimisation.
An execution plan is created based on the hardware being used and the memory
layout of the problem being solved. This plan can then be used when solving
any problem of the same ‘shape’ [9, §1].

1.2 GPU Programming
General Purpose GPU programming (using a Graphics Processing Unit for com-
putation other than rendering graphics) has become a very active field in recent
years, with many new applications and many new programmers rushing to use
this easily available parallel computing resource. Many applications in scientific
computing can be naturally mapped onto a parallel architecture, so there is a
lot of interest in using GPUs as small and relatively cheap parallel processors.

The increasing popularity of this area makes it necessary to develop tools
which can help programmers work with this new and unfamiliar architecture.

GPU Architecture
GPUs provide several parallel processors each containing many individual pro-
cessing cores. Each core has its own register space and cores on an individual
processor share a larger portion of ‘shared memory’. This architecture, the
numbers of cores, the exact amounts of memory and how it is assigned are
all dependent on the exact model of GPU, with significant differences between
models. Figure 1.2 gives some examples and Figures 1.3 and 1.4 show how
parallel threads are split across the processing cores.

GPU Multiprocessors CUDA Cores
GeForce 8800 GTX 16 128
GeForce GTX 460 7 336
GeForce GTX 560 Ti 8 384
Tesla C2070 14 448

Figure 1.2: The number of multiprocessors and processing cores for a
variety of NVIDIA GPUs.

3

Figure 1.3: From the CUDA Programming Guide. This diagram shows
how a parallel program is split into multiple blocks of threads, each of which
is assigned to a GPU processing core.

Parallelising a Problem
When developing GPU programs, a large problem must be solved by breaking
it into small blocks and solving these in parallel. These solved blocks are then
pieced together to give the final result. This piecing together process can often
also be performed in parallel, using tree reduction. Each parallel thread has
limits on the resources it can use, such as registers and access to shared memory.

Deciding exactly how to break down a problem depends on the underly-
ing hardware architecture and the problem being solved. Different models of
GPU provide different features and different problems have varying hardware
requirements for each thread or for groups of threads.

Non-Portable Performance
GPU programming frameworks such as OpenCL [1] and CUDA [2] provide a
programming environment which guarantees program correctness across a vari-
ety of hardware. An OpenCL program can be developed on a system with an
AMD GPU which will run on other AMD or NVIDIA GPUs or a CPU.

However, although the program’s correctness is guaranteed, performance is
generally not portable. Due to the different underlying architectures, different
models of GPU—even those designed by the same hardware provider—will per-
form differently and may require different optimisations for best performance.

4

Figure 1.4: From the CUDA Programming Guide. Threads in a CUDA
program are grouped into thread blocks and blocks are arranged in a grid.
The programmer can choose the block dimensions, which will affect the
execution of their program.

Block Size Choice
When executing a GPU program, many individual threads are executed in par-
allel. As memory access is slow compared to clock frequency, when one thread
accesses memory another can be scheduled on the processor while it waits.
Threads on a processor share the processor’s registers between them so no state
needs to be saved and this context switch can be performed in a single clock
cycle. This thread scheduling masks the memory latency, but requires a large
pool of threads waiting to be executed.

A balance needs to be struck between maximising the parallelism of a prob-
lem (providing more threads in the pool to better mask latency) and the limi-
tations on the memory available to each thread [15]. Because the threads on a
processor must share registers, only a certain number can be running at once on
each processing core. If the problem is split into too many threads, each will still
require registers but will not perform enough computation to mask the memory
access latency, and the resulting overhead will slow down execution. Also, other
factors—such as whether caches in the GPU are used, or how memory is split
between local caches and higher level shared memory—will affect performance
differently depending on how the problem is broken down.

It is difficult even for an experienced GPU programmer to determine what
size blocks the problem should be broken into and how these should be allocated
to the GPU’s processing cores. In many situations, it is beneficial to try to have
as many threads as possible running in parallel. However, this means there
are less registers available per thread and may give worse performance than
scheduling fewer threads at a time.

5

Figure 1.5: This graph shows how the running time of the adi3d_naive
test from Section 4.2 varies with the thread block dimensions. There is little
correlation, making good parameter choice difficult.

1.3 Feasibility of Auto-Tuning

Scaling Optimisations
To perform the tuning, the programmer chooses a small problem, which runs
quickly enough to be executed many times during testing. Optimal parameter
values from this example are then used in the actual problem, which will be
much larger. It is the programmer’s responsibility to choose a suitable test
which is representative of large problems.

Choosing such a test is easy for many problems, which have obvious small
cases running similarly to large cases. In scientific computing, many simulations
use time-marching algorithms, where each state is calculated in turn to progress
the simulation. As long as the hardware is fully utilised, optimisations for a short
simulation of 100 time steps can be translated to the full simulation of 10,000 or
1,000,000 steps. Simulations which can be performed at a lower resolution, such
as weather modelling, are another example. Tuning could be performed at a
coarse resolution of 10km and the results used in a simulation at 100m resolution
which will perform the same kinds of calculations, with similar optimal values.

Running Time
Trying all possible parameter valuations requires an exponential number of tests
to be performed. There is no polynomial time algorithm to find an optimal
valuation (Theorem 3.4.1) or even to find an approximate solution within a
constant factor of optimal (Theorem 3.4.3).

However, the number of parameters and possible values is typically small,
even for real-world tuning. The parameters are often hardware or environment
dependent and the programmer will have a good idea which are important and
what good candidate values are. They will not need to test every possible
program variation.

6

vectorAdd.cu

38 // Device code
39 __global__ void VecAdd(const float* A, const float* B, float* C, int N)
40 {
41 int i = blockDim.x * blockIdx.x + threadIdx.x;
42 if (i < N)
43 C[i] = A[i] + B[i];
44 }

vectorAdd.cu

75 // Invoke kernel
76 int threadsPerBlock = 256;
77 int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
78 VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);

Figure 1.6: This code is from a CUDA SDK example program performing
the vector addition C = A + B. The first extract defines a CUDA kernel,
which will be a single thread executing on the GPU. This thread uses its
position within the thread block to determine which index of the vector add
it is responsible for. The second extract shows how the kernel is invoked,
setting the number of blocks in the grid and threads per block.

For example, when choosing a block size for GPU programming, the pro-
grammer will know that multiples of 32 are most efficient, as threads are ex-
ecuted 32 at a time on each processing core. Although the optimal block size
depends on the problem and the exact GPU, the programmer can easily narrow
down the candidate block sizes to, for example, {16, 32, 64} in the x-dimension
and {2, 4, 6, 8} in the y-dimension. The auto-tuning is still beneficial, by opti-
mising for different hardware, but hundreds of inefficient valuations can imme-
diately be discounted.

Many parameters to be optimised do not affect each other’s optimal values.
This independence can be used to optimise each in turn, significantly reducing
the number of tests required. For example, after the vector addition from Fig-
ure 1.6, the programmer may launch another kernel to multiply the vectors. The
parameters for launching the first kernel would not have any effect on those for
the second and could be optimised separately. This type of independence and
the improvements which can be gained by exploiting it are discussed in detail
in Section 2.3.

Finally, even a small percentage improvement might save days from a month-
long simulation. Even if tuning takes many hours, as long as it produces useful
results then the potential savings are large enough to make it worthwhile. It is
the programmer’s responsibility to choose sufficiently few parameters and pos-
sible values, and a small enough test case that the tuning runs in an acceptable
amount of time.

7

1.4 Developing an Auto-Tuning Framework
My project is the development of a general-purpose auto-tuning system which
is applicable to many problems. In particular, GPU programmers will benefit,
as hardware complexity makes getting optimal performance from a program
difficult, even for an expert. The system helps to mask subtle but important
differences between architectures by tuning individually for each platform.

Objectives
The system should help a programmer choose optimal values for parameters
affecting their program’s execution. Usually the motivation would be to im-
prove the running time by fully utilising the available hardware, although other
properties of the program might be optimised instead. It will allow a single pro-
gram to be optimised differently for execution on distinct hardware platforms,
without knowledge of the underlying architecture.

8

2
System Requirements

Now the problem has been described, I will discuss in more detail the require-
ments for the auto-tuning system.

2.1 Usability and Effectiveness
As the auto-tuning system is an aid to program development, it is appropriate
for the it to be a command line utility and for the programmer to use shell
commands to specify how to compile and run tests.

The system must be easy enough to use that it is a clear improvement over
brute-force tuning, either by hand or using simple shell scripts.

A brute-force search of all possible valuations guarantees finding the opti-
mum. As testing is not necessarily exact, in practice a valuation which is close
to optimal—within 5% for example—would be fine. My optimisation algorithm
does in fact give an optimal valuation (Section 3.3) and the optimisation cannot
be approximated within any constant factor unless P = NP (Section 3.4).

2.2 Operation
To tune compile-time and run-time parameters, the system must compile and
run tests—as specified by the programmer—with parameters set to different
values.

9

Input
Input is provided in a configuration file (an example is included with my source
code listings). This is useful because the optimisation can be set up, saved, and
re-used and some options are quite complex.

The configuration file defines the following settings:

• Which parameters are to be tuned.

• What their possible values are.

• How to compile a test.

• How to run a test.

• How to determine a score for a particular test. Usually this will be the
running time, but other options might be useful. These ‘figures of merit’
are discussed below.

• Other testing options, such as the number test repetitions, how to combine
repeated test scores and whether to minimise or maximise the score.

Generality
Tuning should not be limited to specific programming environments, operating
systems, or types of problem. It should be possible to tune any type of parame-
ter: run-time arguments, #define constants or compiler flags, for example. The
following sections discuss some of these ideas in detail.

Choice of Language
The system is implemented in Python, due to its portability and shell interac-
tion support. Python has interpreters on all major operating systems and is
installed by default on many systems used for programming. There are several
comprehensive built-in modules for spawning sub-processes and reading their
output. Compiling and running arbitrary tests is simple and platform indepen-
dent. It is also easy to keep the system modular and extensible, making future
updates simpler.

Compilation, Execution and Testing
The commands used for compilation and testing are provided by the program-
mer in the configuration file. As the programmer is able to specify these com-
mands, leaving placeholders for the parameters being tuned, the system is very
portable and general-purpose. It does not depend on specific programming
environments—using make and gcc, for example—as the programmer can de-
fine exactly what needs to be done to compile and run their program.

During tuning, it is possible that some tests will fail to run due to hardware
limitations or poor parameter choice. Failed tests (detected by their return code)
should clearly not be considered optimal—even if they finish very quickly—they
should simply be ignored. This allows the tuning to automatically choose from
only those valuations which will run on that particular hardware configuration.

10

Figures of Merit
Usually, tuning will be used to minimise the running time of a program. How-
ever, in some cases different ‘figures of merit’ by which each valuation is scored
are useful. This allows other properties of the program to be optimised, such
as memory usage, data throughput or (in GPU programming) the bandwidth
utilisation between system and GPU memory.

Even when measuring the running time, the part of the program being tuned
may be obscured by the rest. In GPU programming, data must first be copied
onto the GPU, along with the kernel to execute. For large problems this time
is negligible, but it may dominate small test cases used for tuning, distorting
results. If the programmer adds code to time only the relevant part then the
results will be more accurate. The programmer must be able to measure and
report any figure of merit they choose from within the test program itself.

Finally, it is useful to maximise some figures of merit (data throughput, for
example), so there should be a choice between minimisation and maximisation.

Output
To help programmers improve their programs, more output should be shown
than simply the optimal parameter valuation. A log of which tests are run and
what they scored is helpful.

Testing Accuracy
Timing

When timing parallel programs, the elapsed time between the beginning and end
of execution is the most accurate measurement [23, §2]. Using ‘CPU time’ (the
time a process spends executing on the CPU) is misleading as it does not include
memory access times or give accurate results in parallel programs. My system
uses a ‘wall timer’ to evaluate tests (giving the total time from beginning to end,
as if measured using a wall clock). This means that other running processes can
affect the measurements, decreasing the quality of results. The programmer
needs to ensure the system is relatively unloaded to get accurate timings.

Repetition

Testing is not an exact process, so it is useful to repeat a test multiple times.
The programmer can decide whether running multiple tests or increasing the
size of the test case will give better results. There is a balance between these,
as it is sometimes important to measure one-time costs such as setting up a
problem or retrieving the results.

When using a wall timer, inaccuracies come from other processes running at
the same time, whose running time is partially included in the measurement. If
a test is repeated, the most accurate measurement will in fact be the minimum,
as other processes only increase the measured time [23, §2.1]. Therefore, the
default method to aggregate results from repeated tests is to take the minimum.
Clearly this is not always appropriate, so there is a choice between minimum,
maximum, mean and median for this aggregation. Each of these is useful for
different figures of merit and in different situations.

11

2.3 Variable Independence
In simple examples, the parameters to be optimised in a program can be given
as a simple list, for example {A,B,C,D,E, F}. All variables are treated equally
and every possible combination of values is tried in order to find the optimal
valuation.

However, in more complex examples—and often in GPU programs—the pro-
grammer may know that certain variables are in fact independent from others.
For example, A and B may be compiler flags affecting the whole program’s ex-
ecution, whereas C and D control the operation of one parallel loop and E and
F control another. Here, C and D could be optimised independently of E and
F , even though they all depend on A and B (and conversely their values will
all affect the optimal values of A and B). The number of tests required can be
reduced by exploiting this independence, making some tests redundant.

The variables can be written in a format describing this independence:
{A,B, {C,D}, {E,F}}, which says that A and B dominate {C,D} and {E,F}.
Specifically, the optimal values of A and B depend on those of all the other
variables, but the optimal values for C and D depend only on A and B (and
similarly for E and F). This format expresses that C and D are isolated from
E and F and that these pairs can be optimised independently—if an optimal
valuation is found for C and D at one setting of E and F then it will still be
optimal at any other valuation of E and F .

These variable lists can be represented as trees, where each node’s variables
are independent of its siblings’, but depend on the variables of its ancestors and
descendants in the tree. The above example would be displayed as follows:

{A,B}

{C,D} {E,F}

Taking advantage of this type of independence to significantly reduce the
number of tests required is one of the most important features of my system.
In this example, assuming each variable can take three possible values, the
number of tests is reduced from 36 = 729 to only 32 × (32 + 32 − 1) = 153.1
Clearly, this relies on the variables actually being independent—the programmer
is responsible for making sure their claimed independence holds.

A more realistic CUDA program might have three global options and five
parallel loops each governed by three parameters. If each variable can take one
of four possible values then there are 418 ≈ 6.9× 1010 possible combinations to
be tested by a brute-force search. By exploiting independence, there are 34 = 81
possible valuations of the top-level variables. For each of these, there are five
groups of 34 = 81 possible tests, giving an overall total of 34 × (5 × 34 − 4) =
32, 481, approximately 2, 000, 000× less than the number required by brute-
force—a huge improvement.

1The -1 here is because one of the tests required will already have been run while tuning a
previous independent set. Previously run test results are recorded and can be re-used instead
of being re-run. This memoization is discussed in Section 3.3.

12

3
Design

Having described the system’s requirements, I now describe its design and de-
velopment, including overview of the system and a more detailed description of
its more complex parts.

3.1 Overview

Problem Breakdown
When designing the system, there were several distinct parts of the problem
which could be tackled separately:

• The programmer provides the configuration options for the system which
must be read and validated.

• The variable list in the configuration file must be parsed and converted
into a variable tree.

• An evaluation function must be defined, which sends commands to the
shell in order to compile and run each test, returning its score.

• The optimisation algorithm uses the variable tree, the variables’ possible
values and the evaluation function to find the optimal valuation.

• The output of the system informs the programmer how the optimisation
proceeds and what its results are.

13

Modules
The system is split into modules, roughly corresponding to the above outline:

tune.py
This is the main program, which sets up and runs the optimisation, show-
ing the programmer how it proceeds. The function evaluate() is defined
here, which handles all compilation, test execution and timing.

tune_conf.py
Provides a function which reads the configuration file and performs some
simple validation checks and type conversions.

vartree.py
Contains the definition of the VarTree data type, which is used through-
out the system to represent variable trees. It also defines several utility
functions, including the parser vt_parse() and treeprint(), which gives a
textual representation of a VarTree in tree form.
This module in particular was designed to be self-contained, making it
easy to use throughout the system and to maintain or update. Along with
the module vartree_parser.py it contains all the functions needed for
working with VarTree objects.

vartree_parser.py
Provides the Parser class, a parser for VarTree. This was automatically
generated as described in Section 3.2.

optimisation.py
Provides the Optimisation class, which contains the optimisation algo-
rithm (described in Section 3.3), parameterised by an evaluation function,
a variable tree and a list of possible variable values.

optimisation_bf.py
Provides the OptimisationBF class, which is used for testing and mimics
Optimisation but using brute-force to perform the testing.

logging.py
Allows tuning log files to be created and saved, which can be used to
analyse and visualise the testing process.

testing.py
Checks Optimisation against OptimisationBF for different inputs. If no
configuration file is given as input, this test suite is run to demonstrate
the operation of the system, as shown in Figure 4.1.

test_evaluations.py
Provides a function generateEvalFunc(), which takes a VarTree tree as in-
put and generates a sample evaluate() function demonstrating the variable
independence given by the tree. This is used for testing and is described
in Section 4.1.

14

3.2 The Variable Tree Mini-Language
To perform optimisation, the programmer creates a configuration file detailing
what is to be tested and how the testing is to be performed. In this file, they
provide a list of the parameters to be optimised and their possible values. This
list is written in a format allowing the programmer to specify any independence
between variables. This independence can then be used by the optimiser to cut
down the number of valuations which must be checked.

Language Description
The parameters are given in a tree structure, where sibling nodes are indepen-
dent of each other. This is written in the configuration file using the nested
braces notation from Section 2.3, where braces enclose a list of variables and
subtrees, with each subtree enclosed by braces.

For example, if A and B are parameters governing the operation of the
whole test, such as compiler flags and C, D and E, F control two separate
parallel loops in a GPU program, then C, D will be independent of E, F . This
independence would be written {A,B, {C,D}, {E,F}}, denoting that C, D, E
and F are all children of A and B in the parameter tree. This is demonstrated
in Figure 3.1.

>>> vt = vt_parse("{A, B, {C, D}, {E, F}}")
>>> print vt
{A, B, {C, D}, {E, F}}
>>> print treeprint(vt)

{A, B}
|

+----+---+
| |

{C, D} {E, F}

>>> print vt.flatten()
[’A’, ’B’, ’C’, ’D’, ’E’, ’F’]
>>> print vt.vars
[’A’, ’B’]
>>> for st in vt.subtrees: print st
...
{C, D}
{E, F}
>>>

Figure 3.1: The structure of the example VarTree {A,B, {C,D}, {E,F}}.

An internal VarTree node may be empty, signifying that its children are all
independent. Finally, it is also valid to simply specify a flat list of variables
without braces. Figure 3.2 shows some valid variable lists and the trees they
represent. The language’s BNF grammar [5] is given in Figure 3.3.

15

• A,B,C
{A,B,C}

• {A,B, {C,D}, {E,F}}
{A,B}

{C,D} {E,F}

• {A,B, {I, {C,D}, {E,F}}, {G,H}}

{A,B}

{I}

{C,D} {E,F}

{G,H}

• {{A,B}, {C,D}}
∅

{A,B} {C,D}

Figure 3.2: Example VarTree inputs and their corresponding trees.

<vartree> ::= <vartree_braces> | <flat_list>

<vartree_braces> ::= "{" <list> "}"

<list> ::= <element> | <element> "," <list>

<element> ::= <variable> | <vartree_braces>

<flat_list> ::= <variable> | <variable> "," <flat_list>

<variable> ::= <char> | <char> <variable>

<char> ::= <letter_upper> | <letter_lower> | <digit> | <underscore>

Figure 3.3: The BNF grammar defining the VarTree mini-language.

16

Parser Generation
I used wisent [18, 21]—a python parser-generator—to create an LR(1) parser [5]
based on the mini-language’s grammar. Wisent was chosen because it generates
self-contained parsers with no dependencies and has features for simplifying
the parse tree by removing ‘uninteresting’ nodes. By carefully constructing the
input grammar, it was easy to convert the parse trees to the VarTree data type.
Because both the grammar and input to be parsed are small, performance was
not a concern. Simplicity, in terms of dependencies and parse tree conversion,
was more important.

Figure 3.2 shows the grammar file I used, vartree.wi, where nonterminal
nodes to be omitted from the final parse tree are prefixed by an underscore. The
children of these nodes are added directly to the parent node. This makes the
conversion to the VarTree data type almost trivial, as the parse tree’s structure
exactly matches the structure of the variable tree described by the input.

The generated parser is included as a dependency by my parsing function,
vt_parse(). Once the input has been lexed, it is called to generate the parse
tree. Python has a built in module, re.scanner , which is used to perform the
lexical analysis, converting the input into a string of tokens.

vartree.wi

1 VARTREE: LBRACE _LIST RBRACE | _FLATLIST ;
2

3 VARTREE_BR: LBRACE _LIST RBRACE ;
4

5 _LIST: _ELEMENT | _ELEMENT COMMA _LIST ;
6

7 _ELEMENT: VAR | VARTREE_BR ;
8

9 _FLATLIST: VAR | VAR COMMA _FLATLIST ;

Figure 3.4: The wisent grammar file used to generate the parser. The first
line duplicates the definition of VARTREE_BR so there is only one VARTREE or
VARTREE_BR node in the parse tree for each logical VarTree subtree.

17

3.3 The Optimisation Algorithm
I developed a new optimisation algorithm which returns an optimal valuation
and exploits variable independence to significantly reduce the search space and
therefore the running time compared to brute-force testing.

Algorithm Design
The high-level description of my algorithm is shown here, which recursively
optimises all variables in a VarTree N :

Optimise(N)
1 if N has Children
2 then
3 for each valuation v of the top-level variables of N
4 do
5 Call Optimise recursively on each child in turn.
6 The score when all children are optimised is taken as

the score for this valuation of N .
7 return optimal valuation.
8 else
9 � N is a leaf node
10 for each valuation v of the top-level variables of N
11 do
12 Evaluate at this valuation.
13 return optimal valuation.

In practice, the recursive call on line 5 requires more thought. To test a
valuation requires knowledge of all the variables being tested, including those
outside the scope of N or its descendants. The recursive call must include which
valuation of the top-level variables is being checked.

The refined algorithm uses a mapping presets from variable names to values,
which is defined on all variables in the original tree which are not in the subtree
currently being considered. For the initial call to Optimise(N, presets), N is
the entire variable tree, N0 , and presets is empty. For all recursive calls, it
holds that vars(N0) = vars(N) ∪ dom(presets). This enables the leaves of the
recursion to run evaluations of their variables. Some setting is chosen for the
variables at the leaf, then the settings of all the other variables are added from
presets to give a complete valuation, which can be tested. In this way, nodes
are optimised, given values for any variables outside their subtree.

At an internal node, we wish to find an optimal valuation of all the variables
in the subtree, given the valuation of the other variables in presets. The child
subtrees are independent of each other, meaning each can be optimised while
the others are at any arbitrary value. So for a given valuation of the top level
variables, the subtrees can simply be optimised separately, one at a time. Then it
is simply a case of performing this sub-optimisation for each possible valuation
of the top level variables (the sub-optimisations may be different depending
on the higher level variables). The valuation of the top level variables (and
corresponding optimal valuations of subtrees) which gives the best score when
evaluated is chosen and returned.

18

Optimise(N, presets)
1 � Let V be the set of all variables being tuned,

X ⊆ V be variables disjoint from nodes in N ’s subtree,
Y ⊆ V be top-level variables in N [Y ≡ vars(N)] and
Z ⊆ V be non-top-level variables in N ’s children.

2 � Clearly, X,Y,Z are mutually disjoint and V = X ∪ Y ∪ Z.
3 � Let U be the set of all possible values a variable could take.
4 � Finally, let UV denote the set of mappings V 7→ U.
5 � N has type VarTree, and presets ∈ UX.
6 best ← Nil � best will contain the best valuation found so far.
7 if children(N) 6= ∅
8 then
9 � N has children, so use recursive optimisation. (Z 6= ∅)

10 for each v ∈ possibleValuations(N)
� v ∈ UY

11 do
12 � Recursively optimise each child in turn:
13 � Arbitrary values for child variables, used in recursion.
14 childvals ← chooseArb(

⋃
{vars(c) | c ∈ children(N)})

� childvals ∈ UZ

15 for each c ∈ children(N)
16 do
17 � Remove this child’s variables from childvals.
18 childvals′ ← childvals�Z\vars(c)

� childvals′ ∈ UZ\vars(c)

19 � Get optimal values for this child.
20 opt ← Optimise(c, presets⊕ v⊕ childvals′)

� opt ∈ UV

21 � Add these optimums back into childvals
22 childvals ← childvals′⊕(opt�vars(c))

� childvals ∈ UZ

23 � The score for v is tested with all children optimised.
24 valuation ← presets⊕ v⊕ childvals

� valuation ∈ UV

25 if best = Nil or evaluate(best) ≺ evaluate(valuation)
26 then
27 best ← valuation
28 else
29 � N is a leaf node, so test all possibilities. (Y 6= ∅, Z = ∅)
30 for each v ∈ possibleValuations(N)
31 do
32 valuation ← presets ∪ v
33 if best = Nil or evaluate(best) ≺ evaluate(valuation)
34 then
35 best ← valuation
36 return best

19

Notation
The following functions and operators are used in the algorithm:

vars(N) : returns the set of top-level variables of the VarTree N .

children(N) : returns the set of child subtrees of the VarTree N .

evaluate(v) : returns the score for a particular valuation, v. The valuation must
provide values for all variables being tuned (i.e. v ∈ UV), not only those
in the current subtree.

≺ (comparison) : compares two scores, will be the ‘less than’ or ‘greater than’
operator if the optimisation is minimising or maximising, respectively.

possibleValuations(N) : the set of all possible valuations of vars(N). The size
of possibleValuations(N) is exponential in the number of N ’s top-level
variables, but it can be generated on the fly.

chooseArb(C) : given a set of variables, chooses a possible valuation of them
arbitrarily (chooseArb(C) ∈ UC).

⊕ (addition of mappings) : Combines two disjoint mappings. If a ∈ UA and
b ∈ UB with A ∩B = ∅, then a⊕ b ∈ UA∪B where:

(a⊕ b)(x) =

{
a(x) if x ∈ A
b(x) if x ∈ B

� (restriction) : restricts a mapping to a particular subset of its domain. If
a ∈ UA, then a�B ∈ UA\B where:

(a�B)(x) =

{
undefined if x ∈ B
a(x) if x /∈ B

Assumptions
The following assumptions are made about the input to Optimise:

• The variable tree N should be well formed:

– N is not completely empty
– None of the leaves of N are empty
– No variable appears more than once in the tree

These properties are ensured by the validation checks in tune_conf.py.

• The function evaluate() is memoizing, discussed below.

• Empty nodes are handled correctly, discussed below.

20

Empty Tree Nodes
A problem arises at line 10 if a node in the tree has no top-level variables. If
vars(N) = ∅, then possibleValuations(N) = ∅ and the loop body will never run.

To address this, the variable tree can be easily transformed beforehand into
an equivalent tree where every node has at least one variable. For each empty
node N in the tree, a fresh variable xN (with only a single possible value)
is added to that node. Hence, the loop on line 10 is guaranteed to execute
at least once, allowing the subtrees to be optimised and without affecting the
optimisation.

Continual Optimisation
Initially, the valuations for child subtrees are chosen arbitrarily, but as optimal
valuations are found, they are included in childvals for further recursive calls
(on line 22). This means that optimisations found so far in the search can
immediately be used to speed up later tests. This does not affect the results, as
the subtrees are all independent. The speed improvement can be seen clearly
in Figures 4.9 and 4.10 as the algorithm progresses.

Memoization
To keep the algorithm clear and simple, some calls to evaluate are repeated.
For example, on line 25 the current top-level valuation is tested with a call to
evaluate(valuation), but this valuation will already have been tested by the final
recursive call.

Instead of incorporating this into the algorithm, making it considerably more
complex, the evaluate() function is memoized. Internally, evaluate() will keep a
mapping between valuations and scores which can be used to return quickly on
repeated input.

Additionally, the score of a particular test will not change between calls to
evaluate—a very desirable property. Memoization guarantees that each valu-
ation will be tested at most once and generate at most one score, which may
then be used multiple times.

Hence, the optimisation algorithm assumes the following properties of the
evaluation function:

• It is deterministic. Multiple calls to evaluate with the same input will
return the same result. This is required for correctness of the algorithm.

• The cost of repeat calls to evaluate is low. Tests are not re-run, improving
the performance of the algorithm.

These properties are guaranteed by a wrapper to the evaluate() function
provided by the Optimisation class. The function passed to the Optimisation
object may assume that it will only be called once per valuation and need not
ensure these properties itself.

As the algorithm can run exponentially many tests, the memoization table
may require exponential space. If this were a problem for large instances, the
table could be replaced with a cache, only retaining the most recent calls.

21

An Example Execution
Figure 3.6 shows how the algorithm would run when optimising a small example
program. The variable tree is {OPT, {K1}, {K2A,K2B}}, where OPT controls
some global setting, possibly a compiler optimisation and K1 and K2A/B con-
trol two independent GPU kernels, possibly the vector addition followed by
multiplication from Figure 1.6. K2A and K2B control the same kernel, so they
depend on each other, but are independent of K1. The scores for each possible
valuation are given in Figure 3.5.

OPT K1 K2A K2B Score
-O2 128 128 4 14
-O2 128 128 6 15
-O2 128 256 4 12
-O2 128 256 6 17
-O2 256 128 4 16
-O2 256 128 6 17
-O2 256 256 4 14
-O2 256 256 6 19
-O3 128 128 4 13
-O3 128 128 6 14
-O3 128 256 4 11
-O3 128 256 6 16
-O3 256 128 4 11
-O3 256 128 6 12
-O3 256 256 4 9
-O3 256 256 6 14

Figure 3.5: The possible values and test scores used in the example. Using
brute-force testing, each of these 16 possibilities would be tested.

22

Tests
Comment OPT K1 K2a K2b Score

Initial Call:
Optimise({OPT, {K1}, {K2A,K2B}}, ∅)
Optimising {OPT}, Try ‘-O2’.
Chose arbitrary values for children.
Recursively optimise children:
Optimise({K1}, {OPT 7→ ‘-O2’,

K2A 7→ ‘128’,K2B 7→ ‘4’})
-O2 128 128 4 14
-O2 256 128 4 16

When OPT = ‘-O2’, K1 = ‘128’ optimal.
Optimise({K2A,K2B}, {OPT 7→ ‘-O2’,

K1 7→ ‘128’})
-O2 128 128 4 (14)
-O2 128 128 6 15
-O2 128 256 4 12
-O2 128 256 6 17

When OPT = ‘-O2’, K2A = ‘256’ and
K2B = ‘4’ optimal.

The best score for OPT = ‘-O2’ is 12.
Optimising {OPT}, Try ‘-O3’.
Chose arbitrary values for children.
Recursively optimise children:
Optimise({K1}, {OPT 7→ ‘-O3’,

K2A 7→ ‘128’,K2B 7→ ‘4’})
-O3 128 128 4 13
-O3 256 128 4 11

When OPT = ‘-O3’, K1 = ‘256’ optimal.
Optimise({K2A,K2B}, {OPT 7→ ‘-O2’,

K1 7→ ‘256’})
-O3 256 128 4 (11)
-O3 256 128 6 12
-O3 256 256 4 9
-O3 256 256 6 14

When OPT = ‘-O3’, K2A = ‘256’ and
K2B = ‘4’ optimal.

The best score for OPT = ‘-O3’ is 9.
This is better than for ‘-O2’.
Therefore return the following valuation:
{OPT 7→ ‘-O3’,K1 7→ ‘256’,

K2A 7→ ‘256’,K2B 7→ ‘4’}
With a minimal score of 9.

Figure 3.6: An example execution of the optimisation algorithm. Scores
marked with brackets would have been memoized and would not be run
again. Even in this tiny example, 10 tests are required, compared to 16 for
brute-force.

23

Correctness
Theorem 3.3.1 shows that the new optimisation algorithm is correct, i.e. that it
is guaranteed to find an optimal valuation despite ignoring many possible tests.

Theorem 3.3.1 (Correctness of Optimise). The Optimise algorithm returns
an optimal parameter valuation, assuming:

• The given independence holds

• Tests (using evaluate()) do not fail and give correct results

• The variable tree provided is valid

Proof. By induction on the structure of a VarTree node N .
Inductive Hypothesis (I.H.): Optimise(N) returns a valuation which is op-

timal for the variables in N ’s tree, given a valuation of any variables outside the
scope of N .

Base Case: N is a leaf node.
The algorithm tests every possible valuation of the variables of N and
returns an optimal one.

Induction Step: N is an internal node.
For each possible valuation of the top-level variables, the algorithm calcu-
lates an optimal setting of all descendant variables for that valuation (by
Lemma 3.3.2, which, by the I.H., may assume the correctness of Optimise
on the subtrees of N).
The valuation which is best when evaluated along with these ‘descendant
optimums’ must be the optimal valuation of the top-level variables.
Therefore, that valuation and its corresponding ‘descendant optimums’
are optimal for N ’s subtree and are returned.

Lemma 3.3.2. Given a particular valuation of the top-level variables in N ,
the optimal setting (for that particular valuation) of all descendant variables is
found, under the same assumptions as Theorem 3.3.1 and assuming the correct-
ness of Optimise on subtrees of N .

Proof. For each subtreeX, the optimal valuation ofX’s variables is independent
of the setting of any other subtree’s variables. Similarly, X’s setting does not
affect any other subtree’s optimal valuation.

Therefore, a call to Optimise(X) (with an arbitrary setting of sibling vari-
ables) will return an optimal setting of X’s variables, given the valuation of N ’s
top level variables.

Optimise(X) is called on all subtrees X, producing optimal valuations of
each subtree (at the current top-level valuation). Taking all of these indepen-
dent subtree valuations together gives an optimal valuation of all descendant
variables, as required.

24

Complexity
The new algorithm requires significantly less tests than brute-force tuning, as-
suming there is enough independence between variables. In some cases, such as
when all variables are in a single node, the algorithm will clearly not provide
any improvement. However, a more interesting upper bound for the number of
tests required is given here.

Assume the variable tree is a complete k-ary tree of height h, with each node
having a single variable with p possibilities.

For a brute-force approach, there are

n = k
h+1 − 1
k − 1

nodes in the tree [7] and pn possible combinations.
In my algorithm, a leaf node will require p tests and an internal node, for

each of the p possibilities, a recursive call is made to each of the k children.
Hence, the number of tests, T (h), (in terms of tree height) is given by:

T (0) = p
T (h) = p · k · T (h− 1)

expanding this definition gives:

T (h) = p · (pk)h

= p · (pk)blogk(n)c

So where the brute-force algorithm is exponential in the number of nodes,
my algorithm is exponential in the height of the tree.

In reality, it is unlikely that such a tree would be used. For an arbitrary
variable tree, take h to be its height, k to be the maximum number of children at
any node and p to be the maximum number of distinct valuations of any single
node. Multiple variables at a single node simply result in more possibilities.
Now, p(pk)h is an upper bound for the number of tests required. Although p
can of course be exponentially large, this shows that the largest improvements
will be found when the number of possibilities in a single node is reduced.

25

3.4 Alternative Algorithm Designs

A Polynomial-Time Algorithm
Finding a polynomial-time optimisation algorithm would allow much more de-
tailed tuning to be feasibly performed. However, unless P = NP , no such
algorithm exists. As there are no restrictions on the running time of evaluate(),
it only makes sense to consider an algorithm which would make a polynomial
number of calls to evaluate().

Theorem 3.4.1. There is no Parameter Optimisation (PO) algorithm making
a polynomial number of calls to evaluate(), assuming P 6= NP .

Proof. Lemma 3.4.2 shows that SAT ≤p PO. Suppose, for a contradiction, that
there is an algorithm solving PO with a polynomial number of calls to evaluate().
In cases where evaluate() runs in polynomial time, this algorithm itself will run
in polynomial time. The evaluate() function used in Lemma 3.4.2’s reduction
requires only linear time, so the reduction’s invocation of the PO algorithm
will only require polynomial time. Therefore, the reduction demonstrates a
polynomial-time algorithm for the boolean satisfiability problem (SAT), an NP-
Complete problem, violating the assumption that P 6= NP .

Lemma 3.4.2. Boolean Satisfiability is polynomial-time reducible to Parameter
Optimisation.

Proof. Given a formula ϕ, set up the optimisation as follows:

• The parameters to be optimised are exactly the variables in ϕ.

• The possible parameter values are True and False for each parameter.

• The evaluate() function takes a valuation and returns 1 if and only if that
valuation satisfies the SAT instance, returning 0 otherwise.

• The algorithm should maximise the score.

Now, the optimisation will return a valuation maximising the score given by
evaluate(). If this valuation satisfies ϕ then clearly it is satisfiable. Otherwise,
the valuation’s score when passed to evaluate() must have been 0. The optimiser
found the maximal valuation, so there cannot be any valuation returning 1 and
therefore cannot be any satisfying assignment.

Hence, ϕ is satisfiable if and only if the valuation returned by the optimisa-
tion is a satisfying assignment.

The reduction is clearly polynomial-time—the problem translation is simple
and checking if the returned valuation is a satisfying assignment requires linear
time.

26

An Approximation Algorithm
Some optimisation problems can be approximated within a constant factor in
polynomial time [19]. These ε-approximation algorithms guarantee to return a
result which is within a factor of ε of the optimal solution. This would be a
good compromise for my system, as finding a perfectly optimal solution is not
critical.

Theorem 3.4.3. If P 6= NP then there is no polynomial time ε-approximation
algorithm for PO.

Proof. Suppose, for a contradiction, that a polynomial-time ε-approximation
algorithm for PO does exist. PO is a maximisation problem, so the algorithm
would guarantee to find a solution which is not less than 1/ε of the optimal value.

Given a formula ϕ, construct the optimisation given in Lemma 3.4.2. The re-
sult of this (approximated) optimisation will be a valuation v. By construction,
evaluate(v) = 1 or 0. Let the optimal valuation be vopt.

If the formula is satisfiable then evaluate(vopt) = 1. Hence any valuation
returned by the ε-approximation algorithm (which must have a score of at least
1/ε) must in fact have a score of exactly 1.

If the formula is unsatisfiable then evaluate(vopt) = 0 and therefore the
ε-approximation algorithm must return a valuation with a score of 0 (as all
possible valuations have a score of 0).

Therefore, the SAT instance is satisfiable if and only if the valuation returned
by the approximation algorithm is a satisfying assignment. This procedure only
requires polynomial time, violating the assumption that P 6= NP (as SAT is
NP-Complete).

As before, this reduction uses a linear-time evaluate() function. This shows
that there can be no ε-approximation algorithm using only a polynomial num-
ber of tests, because the algorithm as a whole would be polynomial time and
Theorem 3.4.3 would still apply.

27

28

4
Testing

Testing was divided into four main phases. During development I used synthetic
examples to test my implementation of the optimisation algorithm (Section 4.1).
Secondly, I tested the system on some small GPU programs which had previ-
ously been hand-optimised, to make sure it was working correctly and behaving
as expected (Section 4.2). The system was used on a variety of hardware to
optimise an example simulation distributed with OP2 [11] (Section 4.3). This
program is a 2D airfoil simulation using the OP2 API, so it runs in parallel on
GPUs using CUDA and on single- or multi-CPU systems using OpenMP [3].
These results were presented at the Many-Core and Reconfigurable Supercom-
puting Conference 2011 [13] and are to be included in a forthcoming paper for
the Journal of Parallel and Distributed Computing [12]. Finally, I performed
a more in-depth auto-tuning of the airfoil simulation, testing the benefit auto-
tuning might have in actual program development (Section 4.4).

29

4.1 Development
During the system’s development, I created some testing tools. If the system is
run with no configuration file, the tests are used to demonstrate its operation
and its improvements over brute-force optimisation (Figure 4.1).

Sample Test Generation
The module test_evaluations.py defines generateEvalFunc(), which gener-
ates sample tests. A test is represented by a function, evaluate(), which takes a
parameter valuation and returns its score. In practice, evaluate() compiles and
executes the program being optimised and returns the running time. For testing
and debugging, example evaluation functions which did not require this were
useful. Although the results returned are meaningless, these sample functions
still exhibit variable independence. The optimisation algorithm could be tested
in controlled conditions, with none of the uncertainties of running actual tests.

generateEvalFunc() uses a VarTree object to define the variable indepen-
dence of the returned evaluate() function. The function calculates dependent
sets of variables from the tree and hashes each set. These hashes are summed
and returned. Therefore, an optimal value for a variable will be optimal at any
setting of any independent variables, as required.

Variables are dependent if they are in the same VarTree node or if they
are ancestors or descendants. Variables in sibling subtrees, or siblings of an-
cestors are independent. The sets of dependent variables can be described by
{
⋃
{vars(a) | a ∈ ancestors(x)} ∪ vars(x) | x ∈ leaves(vt)}: there is one set for

each leaf in the tree, with each set containing all the variables on the path from
that leaf to the root.

For example, in the VarTree {A,B, {I, {C,D}, {E,F}}, {G,H}}, the inter-
dependent sets are {A,B, I, C,D}, {A,B, I, E, F} and {A,B,G,H}. Calling
generateEvalFunc() for this tree would return a function taking a valuation v
and returning the following sum:

Hash(v(A), v(B), v(I), v(C), v(D))
+Hash(v(A), v(B), v(I), v(E), v(F))
+Hash(v(A), v(B), v(G), v(H))

Results
In the final system, these sample tests are only used for the demonstration shown
in Figure 4.1. However, they were very useful during development for comparing
my optimisation algorithm to the brute-force algorithm and for debugging.

30

$./tune.py

Autotuning System
v0.11

Usage: Please provide the path to a configuration file as an argument.
When no arguments are provided, some sample tests are run.
Press Enter to run the tests.

Possible Values of Variables:
(we use the same ones for all examples)
A = [3, 2, 1]
B = [3, 5, 7]
C = [2, 3]
D = [10, 5]
E = [4, 2]
F = [1, 2]
G = [9, 4]
H = [11, 2]
I = [6, 4, 2]

Example 1

Syntax:
{A, B, {C, D}, {E, F}}

{A, B}
|

+----+---+
| |

{C, D} {E, F}

Minimal Valuation (by brute force):
A = 2, B = 3, C = 2, D = 5, E = 2, F = 2
The score is 856, found in 144 evaluations.

Maximal Valuation (by brute force):
A = 1, B = 3, C = 2, D = 10, E = 2, F = 1
The score is 8987, found in 144 evaluations.

Minimal Valuation (by observing independence):
A = 2, B = 3, C = 2, D = 5, E = 2, F = 2
The score is 856, found in 63 evaluations.

Maximal Valuation (by observing independence):
A = 1, B = 3, C = 2, D = 10, E = 2, F = 1
The score is 8987, found in 63 evaluations.

These results are equal.
The new algorithm performed 44% of the number of tests required by brute-force.

Example 2

Syntax:
{A, B, {I, {C, D}, {E, F}}, {G, H}}

{A, B}
|

+---+--------+
| |

{I} {G, H}
|

+----+---+
| |

{C, D} {E, F}

31

Minimal Valuation (by brute force):
A = 2, B = 5, C = 2, D = 5, E = 2, F = 2, G = 9, H = 11, I = 2
The score is 463, found in 1728 evaluations.

Maximal Valuation (by brute force):
A = 3, B = 5, C = 3, D = 10, E = 4, F = 2, G = 9, H = 2, I = 6
The score is 14028, found in 1728 evaluations.

Minimal Valuation (by observing independence):
A = 2, B = 5, C = 2, D = 5, E = 2, F = 2, G = 9, H = 11, I = 2
The score is 463, found in 216 evaluations.

Maximal Valuation (by observing independence):
A = 3, B = 5, C = 3, D = 10, E = 4, F = 2, G = 9, H = 2, I = 6
The score is 14028, found in 216 evaluations.

These results are equal.
The new algorithm performed 44% of the number of tests required by brute-force.

Figure 4.1: The automated demonstration of the system’s operation.

4.2 Initial Testing
I set up two optimisations of programs with known optimums to test my system
and demonstrate it working with some small examples.

Strategy
The test programs, laplace3d and adi3d, were written by Prof. Mike Giles and
used as examples on his CUDA programming course [10]. They both solve a
3D Laplace equation, by Jacobi iteration and the ADI (Alternating Direction
Implicit) method respectively.

Each program is parameterised by constants BLOCK_X and BLOCK_Y,
which control the block size. There are also two versions of each program—a
naive implementation and a careful implementation with good memory coales-
cence, making good use of the GPU’s memory bandwidth. My tuning used the
parameters BLOCK_X, BLOCK_Y and IMPLEMENTATION, which con-
trolled whether the naive or coalescing GPU code was tested. Figure 4.2 shows
the possible values for each parameter, these values give block sizes which are
multiples of 32 and are mostly below the hardware limit of 512 threads per block
of the test GPU.

For variable independence, I chose to put IMPLEMENTATION at the root
of the tree, with BLOCK_X and BLOCK_Y as a subtree:

{IMPLEMENTATION, {BLOCK_X,BLOCK_Y}}

{IMPLEMENTATION}

{BLOCK_X, BLOCK_Y}

32

laplace3d.conf

37 variables = {IMPLEMENTATION, {BLOCK_X, BLOCK_Y}}

laplace3d.conf

56 BLOCK_X = 16, 32, 48, 64, 96, 128
57

58 BLOCK_Y = 2, 4, 6, 8
59

60 IMPLEMENTATION = laplace3d.cu, laplace3d_naive.cu

Figure 4.2: The configuration file settings for the laplace3d test. The
adi3d test used equivalent settings.

laplace3d.cu

15 #ifndef BLOCK_X
16 #define BLOCK_X 32
17 #endif
18 #ifndef BLOCK_Y
19 #define BLOCK_Y 4
20 #endif

Figure 4.3: The test code was edited so the parameters BLOCK_X and
BLOCK_Y could be set by the compiler, via the -D command-line option.

This is clearly equivalent to a flat list (all combinations will still be tested),
but it seemed logical as IMPLEMENTATION controls the entire program,
whereas BLOCK_X and BLOCK_Y control only a single CUDA kernel.

I edited the source files for each program as shown in Figure 4.3 so that the
parameters BLOCK_X and BLOCK_Y could be set by the compiler instead
of the original #define statement.

The testing was performed on an unloaded machine with a GeForce 8800
GTX graphics card. Each test was repeated five times, taking the minimum as
the overall score.

Results
The results of each run are shown in Figures 4.4 and 4.5 and testing process
is shown in detail in Figures 4.6 and 4.7. The scores for each test are marked
with crosses and the overall score is shown as a bar. Missing bars correspond
to tests which did not run due to the hardware limitations of the test GPU.
Each parameter’s values are plotted below, showing any correlation between
parameter values and the resulting score.

The careful implementation performed better in both cases and the perfor-
mance difference in the laplace3d test was particularly distinct. Otherwise,
there was no clear correlation between the running time and the parameter
values.

33

Minimal valuation:
BLOCK_X = 32, BLOCK_Y = 6, IMPLEMENTATION = laplace3d.cu
Minimal Score:
2.93070292473
The system ran 48 tests.

Figure 4.4: The final lines of output from the laplace3d testing.

Minimal valuation:
BLOCK_X = 64, BLOCK_Y = 2, IMPLEMENTATION = adi3d.cu
Minimal Score:
6.27469491959
The system ran 48 tests.

Figure 4.5: The final lines of output from the adi3d testing.

The system returned optimal values which were slightly better than the
values previously chosen by hand. The laplace3d optimisation found the best
valuation to be BLOCK_X = 32 and BLOCK_Y = 6, with a minimum
running time of 2.931s. Previously, BLOCK_X = 32, BLOCK_Y = 4 was
used, which had a running time of 3.061s. The adi3d test was similar, with
the same original values giving a score of 6.300s and the auto-tuned optimum
of BLOCK_X = 64 and BLOCK_Y = 2 giving an improved score of 6.275s.

Analysis
Although these improvements are small, they are exactly the type of saving
the system is designed to find—when scaled up to a much larger problem the
reduction in running time could vastly outweigh the 20 minutes spent on testing.
This scaling is investigated in Section 4.4. Also, only slight improvement can be
expected from these examples as they have already been tuned by hand. The
auto-tuning was not performed on the same hardware as the hand-tuning so
possibly 32× 4 was in fact optimal, but it is not quite as good on the test PC.

These tests also demonstrated the saving in development time. The manual
tuning took over an hour for each program and was not as thorough as this
auto-tuning.

The GeForce 8800 GTX GPU used for testing has a limit of 512 threads per
block. This meant that some tests (with block sizes over 512 threads) failed to
run. This was not a problem—discarding valuations which cannot be executed
on a particular system is part of the tuning process.

34

Conclusion
The results of this testing were as expected. The performance improvements
were very small compared to the hand-optimisations and there was no clear
correlation between BLOCK_X, BLOCK_Y and the corresponding score,
although there was significant variation in score.

In the laplace3d test, the variation in scores was much greater for the
careful implementation than for the naive implementation. Block size choice is
clearly more important with this version. The same effect was not seen in the
adi3d code—the score variation was similar between the two versions.

35

Figure 4.6: The laplace3d test results. The y-axis has been split to more
clearly show the two separate groups of results.

36

Figure 4.7: The adi3d test results.

37

4.3 Hardware Tuning
I collaborated with Dr. Gihan Mudalige, a researcher at OeRC, to test the
parameter settings required for best performance across different hardware ar-
chitectures. These results were presented at the Many-Core and Reconfigurable
Supercomputing Conference 2011 [13] and are being prepared for inclusion in
a paper for the Journal of Parallel and Distributed Computing [12]. Here, I
describe how the tuning was performed and explain the results obtained.

Strategy
The test program was a simple CFD simulation of an airfoil, distributed with
OP2 to demonstrate its capabilities. The OP2 API can translate this simulation
into CUDA GPU code or CPU code using OpenMP.

The airfoil simulation is parameterised by three parameters controlling the
partition size of the simulation and and five controlling the GPU block size
of different parallel loop calls. The first loop, save_soln, is parameterised by
OP_BLOCK_SIZE_0; the second, adt_calc, by OP_PART_SIZE_1 and
OP_BLOCK_SIZE_1; the third, res_calc, by OP_PART_SIZE_2 and
OP_BLOCK_SIZE_2; the fourth, bres_calc, by OP_PART_SIZE_3
and OP_BLOCK_SIZE_3; and the final loop, update, by the parameter
OP_BLOCK_SIZE_4. Because these parameters control different parallel
loops, they are independent and can be optimised independently. There were
no parameters being tuned which affected the whole program, so the variable
independence was described as follows:

{{OP_BLOCK_SIZE_0},
{OP_PART_SIZE_1, OP_BLOCK_SIZE_1},
{OP_PART_SIZE_2, OP_BLOCK_SIZE_2},
{OP_PART_SIZE_3, OP_BLOCK_SIZE_3},
{OP_BLOCK_SIZE_4}}

∅

{OP_BLOCK_SIZE_0}

{OP_PART_SIZE_1,
{OP_BLOCK_SIZE_1}

{OP_PART_SIZE_2, OP_BLOCK_SIZE_2}

{OP_PART_SIZE_3,
{OP_BLOCK_SIZE_3}

{OP_BLOCK_SIZE_4}

38

For the CPU tests, a new global parameter, OMP_NUM_THREADS,
controlling the number of OpenMP threads was introduced:

{OMP_NUM_THREADS, {OP_PART_SIZE_1},
{OP_PART_SIZE_2},
{OP_PART_SIZE_3}}

{OMP_NUM_THREADS}

{OP_PART_SIZE_1} {OP_PART_SIZE_2} {OP_PART_SIZE_3}

The following possible parameter values were used:

OP_BLOCK_SIZE_0 : 64, 128, 256, 512, 1024 (all GPUs)
OP_BLOCK_SIZE_1 : 64, 128, 256, 512, 1024 (all GPUs)
OP_BLOCK_SIZE_2 : 64, 128, 256, 512, 1024 (all GPUs)
OP_BLOCK_SIZE_3 : 64, 128, 256, 512, 1024 (all GPUs)
OP_BLOCK_SIZE_4 : 64, 128, 256, 512, 1024 (all GPUs)
OP_PART_SIZE_1 : 64, 128, 256, 512, 1024
OP_PART_SIZE_2 : 64, 128, 256, 512, 1024
OP_PART_SIZE_3 : 64, 128, 256, 512, 1024
OMP_NUM_THREADS : 4, 8, 16 (Nehalem CPU)
OMP_NUM_THREADS : 6, 8, 12, 16, 24 (Westmere CPU)
OMP_NUM_THREADS : 2, 4 (Sandy-Bridge CPU)

The following hardware was used for tuning, with each platform being tuned
once using single precision arithmetic and again using double precision.

NVIDIA Tesla C2070, a high-performance GPGPU card.

NVIDIA GTX460, a consumer GPU.

NVIDIA GTX560 Ti, a consumer GPU.

Intel Xeon CPU X5650, 12 cores @ 2.67GHz, a Westmere CPU.

Intel Xeon CPU E5540, 16 cores @ 2.53GHz, a Nehalem CPU.

Intel Core i5 2500K, 4 cores @ 3.3GHz, a Sandy-Bridge CPU.

The figure of merit used for this testing was the execution time of the sim-
ulation part of the program, excluding the problem setup and copying data to
the GPU.

Results
Graphs of the testing results are shown at the end of this section. As before,
the main part shows how the running time varied as the parameter values in
the lower part changed. This allows large speed changes to be correlated with
parameter changes.

The data presented in this section was collected by Dr. Gihan Mudalige
using my auto-tuning system. The analysis and graphs are my own.

39

Analysis
The testing results were very interesting, showing some variations between hard-
ware and some consistent patterns.

The clearest demonstration of the optimisation process was the Tesla C2070
tuning (Figures 4.9 and 4.10). These runs have very similar performance charac-
teristics, although slightly different optimal values. Both show a large oscillation
during tests 30–53, while OP_BLOCK_SIZE_2 and OP_PART_SIZE_2
were varied. There is no noticeable change as OP_BLOCK_SIZE_2 changes,
so almost all the speed-up came from choosing a good OP_PART_SIZE_2
value (512 in this case). OP_PART_SIZE_1 caused a similar, smaller oscil-
lation, showing that this parameter also has a noticeable, predictable effect.

The other GPU tests (Figures 4.11, 4.12, 4.13 and 4.14) responded similarly,
with a lot of variation while OP_PART_SIZE_2 varied and more modest
variation from varying OP_PART_SIZE_1. For the consumer GPUs, the
initial scores were fairly good, so the oscillations are shown as large increases
in running time when bad choices are made, rather than the large speed-up as
good values were chosen in the Tesla C2070 testing.

The CPU tests (Figures 4.15, 4.16, 4.17, 4.18, 4.19 and 4.20) showed very
different performance characteristics. The most influential parameter during
these tests was OMP_NUM_THREADS—most of the graphs show notice-
able ‘steps’ as the value of OMP_NUM_THREADS was changed, with sim-
ilar performance variation within each step as the other variables are tuned.
For example, in the Sandy-Bridge tuning (Figures 4.19 and 4.20), there is some
speed-up from OP_PART_SIZE_2, but the main speed-up comes from the
choice of OMP_NUM_THREADS (4 in this case). Within each choice of
OMP_NUM_THREADS, tuning OP_PART_SIZE_2 provides a consis-
tent improvement and the other parameters don’t cause much noticeable effect.

The parallel loops adt_calc (parameterised by OP_PART_SIZE_1 and
OP_BLOCK_SIZE_1) and res_calc (OP_PART_SIZE_2 and
OP_BLOCK_SIZE_2) comprise the majority of the simulation’s running
time (around 29% and 52% respectively), so it is not surprising that the most
speed-up can be gained in these loops. Even considering this, these loops seem
to vary more than the others.

Interestingly, the partition size parameters provided all the performance ben-
efit; the block size did not make a significant difference.

40

Test Tests BF Score (s) Prev (s)
Tesla C2070 (DP) 81 390,625 17.69 16.72
Tesla C2070 (SP) 81 390,625 7.93 7.55
GeForce GTX 460 (DP) 81 390,625 27.01
GeForce GTX 460 (SP) 81 390,625 10.41
GeForce GTX 560 Ti (DP) 81 390,625 19.65 22.44
GeForce GTX 560 Ti (SP) 81 390,625 7.82 8.15
Nehalem Xeon E5540 (DP) 39 375 54.00
Nehalem Xeon E5540 (DP) 39 375 39.08
Westmere Xeon X5650 (DP) 65 625 45.29
Westmere Xeon X5650 (SP) 65 625 33.71
Sandy-Bridge Core i5 (DP) 26 250 63.60
Sandy-Bridge Core i5 (DP) 26 250 48.63

Figure 4.8: An overview of the tuning results. The number of tests which
would have been required by brute-force for the same optimisation is given
for comparison (BF). Also included (where known) is the simulation’s run-
ning time using the previous parameter settings of OP_PART_SIZE =
OP_BLOCK_SIZE = 256 (Prev). In fact, this is a very good choice,
giving almost optimal values. Running time cannot be measured exactly,
so there is some variation in results, especially those measured at different
times. The ‘default’ results which appear lower than the auto-tuned results
are due to this variation.

Conclusion
Auto-tuning is important for frameworks such as OP2—parallel programming
libraries aiming to run a large variety of problems on a variety of hardware.
Good performance is hardware and implementation dependent for this type of
problem, so being able to tune the library parameters depending on the hardware
being used and the problem being solved is useful.

These results also demonstrate the potential for discovering performance-
critical parts of a program. The tuning logs show which parameters affect the
score and which have little impact. This guides the programmer to focus only
on important optimisations or to add extra parameterisation to important areas
for finer-level tuning.

Clearly, a programmer without an in-depth knowledge of the underlying
hardware cannot be expected to accurately predict a good block size. When
running the airfoil simulation on a GPU, choosing OP_PART_SIZE_2 is
critical. In the Tesla C2070 test for example, only assuming that multiples of
32 are good values is not enough—64 gives a score around 55 seconds but 512
gives a much better score of just under 18 seconds (with all other parameters
being constant). Different multiples can give large variations in performance,
so even this knowledge is not sufficient to making a good choice.

41

Figure 4.9: Airfoil tuning on a Tesla C2070, Double Precision.

42

Figure 4.10: Airfoil tuning on a Tesla C2070, Single Precision.

43

Figure 4.11: Airfoil tuning on a GeForce GTX 460, Double Precision.

44

Figure 4.12: Airfoil tuning on a GeForce GTX 460, Single Precision.

45

Figure 4.13: Airfoil tuning on a GeForce GTX 560 Ti, Double Precision.

46

Figure 4.14: Airfoil tuning on a GeForce GTX 560 Ti, Single Precision.

47

Figure 4.15: Airfoil tuning on a Nehalem Xeon E5540, Double Precision.

48

Figure 4.16: Airfoil tuning on a Nehalem Xeon E5540, Single Precision.

49

Figure 4.17: Airfoil tuning on a Westmere Xeon X5650, Double Precision.

50

Figure 4.18: Airfoil tuning on a Westmere Xeon X5650, Single Precision.

51

Figure 4.19: Airfoil tuning on a Sandy-Bridge Core i5, Double Precision.

52

Figure 4.20: Airfoil tuning on a Sandy-Bridge Core i5, Single Precision.

53

4.4 In-Depth Tuning
To demonstrate how a programmer might be able to further improve their code
using auto-tuning a second time, I looked into the airfoil simulation in more
detail. The simulation uses a time-marching algorithm, where each state is
calculated from the previous one. I ran the tuning once using 500 iterations and
once using 10,000. This showed that a small test case could be fairly quickly
tuned to provide information which was relevant to a much longer run.

Strategy
The two parallel loops most affecting performance are adt_calc and res_calc
so this tuning focused on those loops. I reduced the set of parameters and ex-
panded the sets of possible variables to study these performance-critical loops
in detail. For OP_PART_SIZE_1, I expanded the range of values to both
lower and higher than before. For OP_PART_SIZE_2, which had the great-
est effect, I tested every multiple of 64 up to 1024, as hardware limitations stop
the test from running at higher values.

The Tesla C2070 I used for testing can cache memory accesses by the pro-
cessing cores. Data is cached in 128B lines, whereas a direct memory access
may be as small as 32B. So if a thread’s memory access pattern is sparse with a
large ‘stride’ it can be beneficial to disable this cache, using the CUDA compiler
flags -Xptxas -dlcm=cg (disable) or -Xptxas -dlcm=ca (enable). My tuning
tested the effect of this caching on the simulation.

OP_PART_SIZE_1 : 32, 128, 512, 1024, 1536
OP_PART_SIZE_2 : 64, 128, 192, 256, 320, 384, 448, 512,

576, 640, 704, 768, 832, 896, 960, 1024
L1_CACHE : cg, ca

{L1_CACHE}

{OP_PART_SIZE_1} {OP_PART_SIZE_2}

Results
The results of my tuning are shown in Figures 4.21 and 4.22 for the 500 and
10,000-iteration runs, respectively.

54

Analysis
The caching made surprisingly little difference, with very similar scores and
performance characteristics with or without it. It had little effect on the speed
or the other parameters’ optimums. Otherwise, the tuning was consistent with
previous results: OP_PART_SIZE_1 provided moderate improvement and
OP_PART_SIZE_2 had a significant effect. Both parameters were generally
better set as high as possible. There is a small ‘dip’ in running time around
OP_PART_SIZE_2 = 512 which gave the overall optimum (L1_CACHE =
ca,OP_PART_SIZE_1 = 1536,OP_PART_SIZE_2 = 640), although
these differences were all very small.

The 500 and 10,000-iteration tuning have almost identical performance char-
acteristics. An optimal valuation from a small test case can be used on larger
examples with almost optimal performance. Choosing a representative test case
is the responsibility of the programmer, but is easy for these time-marching
simulations.

Conclusion
This testing successfully showed that detailed information on important parts
of the program could be gained by two relatively short tuning runs, instead of
one very large, detailed run. I also showed that optimisations for small test
cases are applicable to large simulation runs, as long as a suitable small-scale
test is chosen.

When I ran the 10,000-iteration code using the optimal valuation found
in the 500-iteration testing, the score was 190.5s—within 8.6% of the optimal
score from the full 10,000-iteration tuning (175.4s, at valuation L1_CACHE =
ca,OP_PART_SIZE_1 = 1024,OP_PART_SIZE_2 = 896). My system’s
improvement over the worst test run (taking 789.3s) was 97.5% of the optimal
improvement.

55

Figure 4.21: Airfoil code with 500 iterations tuning results on Tesla C2070,
Double Precision. Each test was run 3 times (marked with crosses).

56

Figure 4.22: Airfoil code with 10,000 iterations tuning results on Tesla
C2070, Double Precision.

57

58

5
Conclusions

I have created a general-purpose auto-tuning framework to help programmers
determine optimal parameter values for their programs.

The system’s design and development was driven by real-world needs, so it
is genuinely useful for developing real software. The system has appropriate
and useful features without being overly complex and is, I believe, far superior
to previous brute-force and hand-tuning approaches.

The system is already being used in OeRC, which backs this up. Results from
the airfoil tuning were included in a presentation at the MRSC 2011 conference,
which shows that this type of optimisation is certainly useful.

5.1 Testing Results
When programming GPUs, there is a huge performance difference between good
and bad block size choices, but it is difficult to predict an appropriate size
even for an experienced programmer. In my testing the performance gap was
commonly a factor of three or even more, even between sensible-seeming values.

By exploiting variable independence the auto-tuning can feasibly test many
more possible parameter values than brute-force testing. The small-case tuning
of the airfoil code performed 40 tests in under 45 minutes; an exhaustive search
would require 160. Previously found optimums are used by my algorithm, so
brute-force testing would take significantly more than four times as long.

For many scientific applications, choosing a small test case which accurately
represents much larger problem instances is easy. It is critical that short tuning
runs can be performed relatively quickly and the results are still applicable to
large problems.

59

5.2 Limitations

Running Time
Tuning may require an exponential number of tests to be performed, limiting
the number of parameter values which can feasibly be tested. In practice, the
number of parameters and values is likely to be relatively small—the program-
mer can select a few suitable candidate values. Also, one high-level tuning run
can be used to guide a second, focused run, allowing detailed analysis of im-
portant parts of a program without requiring a huge parameter space. Finally,
variable independence can hugely reduce the number of tests required.

Scope
The system can only perform tests specified by the programmer—there is no
analysis or suggestion of optimisations, which might be useful to inexperienced
programmers. The tool is designed to help choose between well defined poten-
tial solutions, not to suggest them. New optimisations can be discovered by
performing multiple tuning runs, focusing on the most important areas with
detailed tuning.

Programmer Education
The system’s ability to educate the programmer could be expanded—as well
as giving an optimal valuation, the ability to explore the results in more detail
may be useful. Log files are currently generated which can be used to show
which variables were most influential, but the system does not perform any
such analysis automatically. Graphical output and analysis of the tuning could
help indicate important areas of the program which should be inspected more
closely.

5.3 Future Work
My goal of a general parameter tuning framework has been fulfilled. However, if
this type of tuning were used in a more restricted setting, there would be many
potential extra features, at the expense of generality.

Variable Independence
Currently, the variable independence is provided by the programmer, but could
theoretically be determined by a static analysis of the program. This would be
difficult for a general system, as it would need to parse and understand program
source code. If auto-tuning were included in an IDE or a compiler, this parsing
would already be in place, so the variable tree could be built automatically,
using similar techniques to those used for automatic parallelisation [14].

Testing in Parallel
It may be useful to perform tests in parallel, particularly to scientific program-
mers with lots of parallel hardware, such as a GPU cluster. If each test requires

60

a single GPU, tuning could be accelerated almost linearly by using multiple
GPUs to run multiple tests at once. Clearly, it must be guaranteed that tests
do not interfere with each other or run differently depending on which hardware
they are assigned, this would be an interesting idea for a much more specialised
system.

Optimisation Methods
Machine Learning techniques have already been applied to compiler-based auto-
tuning (for example [16] and [4]) to reduce the search space of possible solutions.
Genetic algorithms are another method to quickly find good solutions to optimi-
sation problems. Both methods could be very interesting to explore in a system
such as mine, especially if combined with knowledge of variable independence
to further guide the optimisation.

Run-Time Tuning
For libraries such as OP2, which have some control over how a problem is
executed, it would be interesting to investigate run-time optimisation. At each
iteration of a simulation, new parameter values could be tried, so the simulation
self-tunes as it runs, rather than requiring an initial tuning run.

5.4 Assessment
My system has already proved itself useful in tuning programs across a vari-
ety of hardware platforms, highlighting their similarities and differences. The
presentation of tuning results at MRSC 2011 and inclusion in a forthcoming
JPDC paper support this. My goals of generality and ease of use have been
achieved—the system provides massive benefit over previous solutions, as well
as providing a being block for more tightly-focused systems using similar ideas.

61

References

[1] Khronos Group: OpenCL. http://www.khronos.org/opencl/.

[2] NVIDIA: CUDA. http://www.nvidia.com/object/cuda_home.html.

[3] OpenMP API. http://openmp.org.

[4] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O’Boyle,
J. Thomson, M. Toussaint, and C.K.I. Williams. Using machine learn-
ing to focus iterative optimization. Code Generation and Optimization,
IEEE/ACM International Symposium on, 0:295–305, 2006.

[5] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools. Addison-Wesley, 2nd edition,
2006.

[6] Jeff Bilmes, Krste Asanović, Chee whye Chin, and Jim Demmel. Optimiz-
ing matrix multiply using PHiPAC: a Portable, High-Performance, ANSI
C coding methodology. In Proceedings of International Conference on Su-
percomputing, Vienna, Austria, July 1997.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT press, 2nd edition, 2001.

[8] James Demmel, Jack Dongarra, Armando Fox, Sam Williams, Vasily
Volkov, and Katherine Yelick. Accelerating Time-to-Solution for Compu-
tational Science and Engineering. Scientific Discovery Through Advanced
Computing, (15):46–57, 2009.

[9] Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, Special issue on “Program Generation,
Optimization, and Platform Adaptation”, 93(2):216–231, 2005.

[10] Mike Giles. Course on CUDA programming on NVIDIA GPUs. Course
materials available at: http://people.maths.ox.ac.uk/gilesm/cuda/.

[11] Mike Giles. A framework for parallel unstructured grid applications on
GPUs. In SIAM Conference on Parallel Processing for Scientific Comput-
ing, February 2010.

[12] Mike Giles and Gihan Mudalige. Optimising the OP2 Framework for GPU
Architectures. In Journal of Parallel and Distributed Computing, Special
edition on “Novel Architectures in HPC”, 2011 (In preparation).

62

[13] Mike Giles, Gihan Mudalige, and Ben Spencer. Optimising the OP2
Framework for GPU Architectures. In Many-core and Reconfigurable Su-
percomputing Conference, April 2011. Presentation slides available at:
http://www.mrsc2011.eu/sites/default/files/mrsc11_giles.pdf.

[14] M. Girkar and C.D. Polychronopoulos. Automatic extraction of functional
parallelism from ordinary programs. IEEE Transactions on Parallel and
Distributed Systems, 3(2):166–178, March 1992.

[15] Lee Howes, Anton Lokhmotov, Alastair F. Donaldson, and Paul H.J. Kelly.
Towards Metaprogramming for Parallel Systems on a Chip. In Proceedings
of the 3rd EuroPar Workshop on Highly Parallel Processing on a Chip,
volume 6043 of Lecture Notes in Computer Science. Springer, 2009.

[16] Shun Long and Michael O’Boyle. Adaptive java optimisation using
instance-based learning. In Proceedings of the 18th annual international
conference on Supercomputing, ICS ’04, pages 237–246. ACM, 2004.

[17] Akira Nukada and Satoshi Matsuoka. Auto-tuning 3-D FFT library for
CUDA GPUs. In Proceedings of the ACM/IEEE conference on Supercom-
puting, page 10. ACM Press, Portland, November 2009.

[18] David Pager. A practical general method for constructing LR(k) parsers.
Acta Informatica, 7:249–268, 1977.

[19] Michael Sipser. Introduction to the Theory of Computation. Course Tech-
nology, International 2nd edition, 2006.

[20] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jeffrey K.
Hollingsworth. A scalable auto-tuning framework for compiler optimiza-
tion. International Parallel and Distributed Processing Symposium, 2009.

[21] Jochen Voß. Wisent: a python parser generator.
http://seehuhn.de/pages/wisent.

[22] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A
library of automatically tuned sparse matrix kernels. In Proceedings of
SciDAC 2005, Journal of Physics: Conference Series, San Francisco, CA,
USA, June 2005. Institute of Physics Publishing.

[23] R. Clint Whaley and Anthony M. Castaldo. Achieving accurate and
context-sensitive timing for code optimization. Software: Practice & Expe-
rience, 38(15):1621–1642, April 2008.

[24] R. Clint Whaley and Antoine Petitet. Minimizing development and mainte-
nance costs in supporting persistently optimized BLAS. Software: Practice
and Experience, 35(2):101–121, February 2005.

[25] Jianxin Xiong, Jeremy Johnson, Robert W. Johnson, and David Padua.
SPL: A language and compiler for DSP algorithms. In Programming Lan-
guages Design and Implementation (PLDI), pages 298–308, 2001.

[26] K. Yotov, X. Li, G. Ren, M.J.S. Garzaran, D. Padua, K. Pingali, and
P. Stodghill. Is search really necessary to generate high-performance blas?
Proceedings of the IEEE, 93(2):358–386, February 2005.

63

Source Code Listing

tune.py . 65
optimisation.py . 71
vartree.py . 75
tune_conf.py . 80
logging.py . 83
airfoil_autotuning.conf (a sample configuration file) 85

64

tune.py

1 #! /usr /bin /env python
2
3 # Autotuning System
4
5 # v0 .11
6
7
8 # Command line arguments
9 import sys

10 # Configuration file handling
11 from tune_conf import get_settings
12 # The optimiser
13 from optimisation import Optimisation
14 # Running commands
15 import os
16 from subprocess import Popen , PIPE , STDOUT
17 # Timing commands
18 import time
19 # Maths
20 import math
21 # Test Logging and output .
22 from logging import TestLog
23
24
25 # The main script ##
26
27 def main ():
28 # The script has been executed directly
29
30 print
31 print " Autotuning System ". center (80)
32 print "v0 .11". center (80)
33 print
34
35 # Command Line Arguments
36 # Read name of config file from command line
37
38 if len(sys.argv) == 2:
39 configFile = sys.argv [1]
40 else :
41 print " Usage : Please provide the path to a configuration file as an

argument ."
42 print "When no arguments are provided , some sample tests are run."
43 print " Press Enter to run the tests ."
44
45 try:
46 raw_input ()
47 except KeyboardInterrupt : # Ctrl -C
48 print
49 exit ()
50
51 from testing import run_testing
52
53 run_testing ()
54
55 exit ()
56
57
58
59
60 # Get the settings
61 settings = get_settings (configFile)
62
63
64 # Set the working directory to that of the config file
65 # This means that commands in the config file can be written
66 # RELATIVE TO THE CONFIG FILE
67 # and this program will respect this . The config writer need not assume
68 # where the program will be run from , only where the config is stored .
69 path = os.path. dirname (os.path. realpath (configFile))
70 os. chdir (path)

65

71
72
73 if(True):
74 print " Retrieved settings from config file:"
75 print
76 print " vartree :\n" + settings [’vartree ’]
77 print
78
79 from vartree import treeprint_str
80 print " displayed as a tree :\n"
81 print treeprint_str (settings [’vartree ’])
82
83 print " possible values :\n" + strVarVals (settings [’possValues ’])
84 print
85
86 for opt in [’compiler ’, ’test ’, ’evaluation ’, ’cleanup ’]:
87 if opt in settings :
88 print opt + ": \n" + str(settings [opt]) + "\n"
89
90 print
91
92
93
94 # Check if we are keeping logs and if so initialise the logging .
95 logging = settings [’log ’] is not None
96 if logging :
97 testLog = TestLog (True)
98
99

100
101 # Build the evaluation function
102
103 def evaluate (valuation):
104 # valuation is a dictionary mapping variable names to values .
105 # returns the figure of merit (usually time taken) of runnning the test

with these values .
106
107 PRINT_PROGRESS = True
108 PRINT_TESTING = True
109
110 # The optimiser will only call this function once per valuation .
111 # So there is no need to check for multiple runs .
112 # We store a static variable holding the number of tests performed , so

each can be given a unique id.
113 # This variable is incremented here , but defined after evaluate , so it

will be static .
114 evaluate . testNum += 1
115
116
117 # Add this test to the log
118 if logging :
119 testLog . createTest (evaluate .testNum , valuation)
120
121
122 if PRINT_PROGRESS :
123 print "Test " + str(evaluate . testNum) + ":"
124 print strVarVals (valuation , ", ")
125
126
127 # First , compile the test , if needed .
128 if ’compiler_mkStr ’ in settings :
129 if PRINT_PROGRESS : print " Compiling test " + str(evaluate . testNum)
130
131 cmdStr = settings [’compiler_mkStr ’](evaluate .testNum , valuation)
132 # Start the compilation
133 if PRINT_TESTING :
134 p = Popen (cmdStr , shell =True)
135 else :
136 p = Popen (cmdStr , shell =True , stdout =PIPE , stderr = STDOUT) #

Collect the output , without printing .
137 # Wait for the compilation to finish , this sets the return code .
138 p.wait ()
139 # Check the retun code .
140 if(p. returncode != 0):

66

141 evaluate . failures . append ((" COMPILATION OF TEST " + str(evaluate .
testNum) + " FAILED .", valuation))

142 return None
143
144
145 # Repeat the tests the number of times specified
146 result = 0.0;
147 result_sq = 0.0;
148 min_result = None;
149 max_result = None;
150 median_result = []
151
152 for i in xrange (1, settings [’repeat ’]+1):
153
154 # Run the test
155 # One of these branches should always be true .
156 if ’evaluation_mkStr ’ in settings :
157
158 if PRINT_PROGRESS :
159 nthRun = ""
160 if settings [’repeat ’] > 1:
161 nthRun = " ("+ ordinal (i)+" run)"
162 print " Running test " + str(evaluate . testNum) + nthRun
163
164 # Execute the evaluation , the result will be output on the last

line .
165
166 cmdStr = settings [’evaluation_mkStr ’](evaluate .testNum , valuation

)
167 # Start the evaluation
168 p = Popen (cmdStr , shell =True , stdout =PIPE , stderr = STDOUT)
169 # Wait for the evaluation to finish , this sets the return code .
170 p.wait ()
171 # Check the retun code .
172 if(p. returncode != 0):
173 evaluate . failures . append ((" EVALUATION OF TEST " + str(

evaluate . testNum) + " FAILED .", valuation))
174 return None
175 # Get the program output .
176 output = p. stdout . readlines ()
177
178 if PRINT_TESTING : print ’’.join(output)
179
180 if len(output) == 0:
181 print "Test did not return any output !"
182 exit ()
183
184 # Take the last line of output to be the FOM.
185 result += float (output [-1])
186 result_sq += float (output [-1]) ** 2
187 min_result = min(min_result , float (output [-1])) if min_result is

not None else float (output [-1])
188 max_result = max(max_result , float (output [-1])) if max_result is

not None else float (output [-1])
189 median_result . append (float (output [-1]))
190
191 if PRINT_PROGRESS and settings [’repeat ’] > 1:
192 print " Result of test " + str(evaluate . testNum) + ", " +

ordinal (i) + " run: " + str(float (output [-1]))
193
194
195 # Add this score to the log:
196 if logging :
197 testLog . logTest (evaluate .testNum , float (output [-1]))
198
199
200 elif ’test_mkStr ’ in settings :
201
202 if PRINT_PROGRESS :
203 nthRun = ""
204 if settings [’repeat ’] > 1:
205 nthRun = " ("+ ordinal (i)+" run)"
206 print " Running test " + str(evaluate . testNum) + nthRun
207

67

208 # Execute test , the result will be the time taken .
209
210 cmdStr = settings [’test_mkStr ’](evaluate .testNum , valuation)
211
212
213 start = time.time ()
214
215 # Start the test
216 if PRINT_TESTING :
217 p = Popen (cmdStr , shell =True)
218 else :
219 p = Popen (cmdStr , shell =True , stdout =PIPE , stderr = STDOUT) #

Collect the output , without printing .
220 # Wait for the test to finish , this sets the return code .
221 p.wait ()
222
223
224 stop = time.time ()
225
226
227 # Check the retun code .
228 if(p. returncode != 0):
229 evaluate . failures . append ((" RUNNING OF TEST " + str(evaluate .

testNum) + " FAILED .", valuation))
230 return None
231
232
233 result += stop - start
234 result_sq += (stop - start) ** 2
235 min_result = min(min_result , stop - start) if min_result is not

None else stop - start
236 max_result = max(max_result , stop - start) if max_result is not

None else stop - start
237 median_result . append (stop - start)
238
239 if PRINT_PROGRESS and settings [’repeat ’] > 1:
240 print " Result of test " + str(evaluate . testNum) + ", " +

ordinal (i) + " run: " + str(stop - start)
241
242
243 # Add this score to the log:
244 if logging :
245 testLog . logTest (evaluate .testNum , stop - start)
246
247
248 else :
249 # Should never be reached .
250 evaluate . failures . append ((" COULD NOT RUN TEST " + str(evaluate .

testNum) + ".", valuation))
251 return None
252
253
254 # End for loop running the test multiple times
255 # Divide result by settings [’ repeat ’] to get an average .
256 # This might as well be sum , but an avg seems more intuitive .
257 # (and also allows us to calculate other things , such as std deviation)
258 result = result / settings [’repeat ’]
259
260 median_result .sort ()
261 median_result = (median_result [len(median_result)/2]) if bool(len(

median_result)%2) else (median_result [len(median_result)/2] +
median_result [len(median_result)/2 -1]) /2.0

262
263 if PRINT_PROGRESS :
264 if settings [’repeat ’] > 1:
265 print " Average result of test " + str(evaluate . testNum) + ": " +

str(result)
266 print " Minimum Result : " + str(min_result)
267 print " Maximum Result : " + str(max_result)
268 print " Median Result : " + str(median_result)
269 variance = (result_sq / settings [’repeat ’]) - (result ** 2)
270 print " Variance : " + str(variance)
271 std_dev = math.sqrt(variance)
272 print " Standard Deviaton : " + str(std_dev)

68

273 c_o_v = std_dev / abs(result) if result != 0 else " Undefined (avg
is 0)"

274 print " Coefficient of Variation : " + str(c_o_v)
275 else :
276 print " Result of test " + str(evaluate . testNum) + ": " + str(

result)
277
278
279 # Run the cleanup , if needed
280 if ’cleanup_mkStr ’ in settings :
281 if PRINT_PROGRESS : print " Cleaning test " + str(evaluate . testNum)
282
283 cmdStr = settings [’cleanup_mkStr ’](evaluate .testNum , valuation)
284 # Start the cleanup
285 if PRINT_TESTING :
286 p = Popen (cmdStr , shell =True)
287 else :
288 p = Popen (cmdStr , shell =True , stdout =PIPE , stderr = STDOUT) #

Collect the output , without printing .
289 # Wait for the cleanup to finish , this sets the return code .
290 p.wait ()
291 # Check the retun code .
292 if(p. returncode != 0):
293 evaluate . failures . append ((" CLEANUP OF TEST " + str(evaluate .

testNum) + " FAILED .\n(test was still used)", valuation))
294 # Need not return None , as we still got a result .
295
296
297
298 if PRINT_PROGRESS : print
299
300
301 # Set the overall result to min /max /med / avg :
302 if settings [’overall ’] == ’avg ’:
303 overall = result
304 elif settings [’overall ’] == ’max ’:
305 overall = max_result
306 elif settings [’overall ’] == ’med ’:
307 overall = median_result
308 else :
309 overall = min_result
310
311 # Add this overall score to the log
312 if logging :
313 testLog . logOverall (evaluate .testNum , overall)
314
315 # Return the FOM.
316 return overall
317
318
319 # Define evaluate . testNum , which will be static inside evaluate .
320 evaluate . testNum = 0
321 # Define a list of evaluations which failed in some way .
322 evaluate . failures = []
323
324
325
326
327 # Set up the optimiser
328 test = Optimisation (settings [’vartree ’], settings [’possValues ’], evaluate)
329
330
331 if(settings [’optimal ’] == ’min ’):
332 test. minimiseScore ()
333 if(settings [’optimal ’] == ’max ’):
334 test. maximiseScore ()
335
336
337 test. calculateOptimum ()
338
339 if not test. successful ():
340
341 print
342 print "Not enough evaluations could be performed ."

69

343 print " There were too many failures ."
344
345 else :
346
347
348 print
349 print settings [’optimal ’]. capitalize () + "imal valuation :" # Minimal or

Maximal
350 print strVarVals (test. optimalValuation () , ", ")
351 print settings [’optimal ’]. capitalize () + "imal Score :" # Minimal or

Maximal
352 print test. optimalScore ()
353 print "The system ran " + str(test. numTests ()) + " tests ."
354
355
356
357 # Check for any failures during the evaluations
358 if(len(evaluate . failures) > 0):
359 print
360 print " FAILURES :"
361 for f in evaluate . failures :
362 print " " + f[0]
363 print " " + strVarVals (f[1] , ", ")
364 print
365
366
367
368 # Write the CSV log file , if needed
369 if logging :
370 testLog . writeCSV (settings [’log ’])
371
372
373
374
375
376
377
378
379
380
381 # A little helper
382
383
384 def strVarVals (d, sep="\n"):
385 return sep.join ([str(var) + " = " + str(val) for var ,val in sorted (d. items ())

])
386
387
388 def ordinal (n):
389 if 10 <= n % 100 < 20:
390 return str(n) + ’th ’
391 else :
392 return str(n) + {1 : ’st ’, 2 : ’nd ’, 3 : ’rd ’}. get(n % 10, "th")
393
394
395
396 # Actually run the script ##
397
398 if __name__ == ’__main__ ’:
399 main ()

70

optimisation.py

1 """
2 Autotuning System
3
4 optimisation .py
5
6 Defines the Optimisation class .
7 This represents the optimisation algorithm .
8 """
9

10
11 # defines the VarTree class and a parser converting strings to VarTrees .
12 from vartree import VarTree , vt_parse
13
14
15
16
17 # The optimisation class ###
18
19 class Optimisation :
20
21 # vartree - an instance of VarTree giving the variable tree to work on.
22 # possValues - a dictionary mapping variable names to lists of possible

values .
23 # N.B. this must include mappings for all variables in vartree
24 # evaluationFunc - a function to evaluate a particular test .
25 # takes a dictionary mapping variable names to values ,
26 # returns some figure of merit .
27
28 # Initialisation
29 def __init__ (self , vartree , possValues , evaluationFunc):
30
31 vt = vt_parse (vartree)
32
33 self. __vartree = vt
34 self. __possValues = possValues
35 self. __evaluationFunc = evaluationFunc
36
37 self. minimiseScore () # by default we take smaller scores as better .
38
39 self. __resetStoredVals ()
40
41
42 # Resets memoized info and saved results .
43 # Can be called if anything is changed which would invalidate this .
44 def __resetStoredVals (self):
45 self. __evaluationMemory = {}
46 self. __optValuation = None
47 self. __optScore = None
48 self. __numTests = None
49 self. __successful = None
50
51
52 # updates possValues
53 def setPossValues (self , possValues):
54 self. __possValues = possValues
55 self. __resetStoredValues ()
56
57
58 # updates evaluationFunc
59 def setEvaluationFunc (self , evaluationFunc):
60 self. __evaluationFunc = evaluationFunc
61 self. __resetStoredValues ()
62
63
64 # use ’min ’ to calculate optimum valuation .
65 def minimiseScore (self):
66 self. __best = min
67 self. __resetStoredVals ()
68
69 # use ’max ’ to calculate optimum valuation .
70 def maximiseScore (self):

71

71 self. __best = max
72 self. __resetStoredVals ()
73
74
75 # The evaluate function called by my code
76 # This provides a memoizing wrapper to evaluationFunc
77 # and also updates __numTests
78 def __evaluate (self , test):
79
80 # converts dictionaries to a form which can be used as a key
81 def makeKey (d):
82 return tuple (sorted (test. items ()))
83
84 k = makeKey (test)
85
86 if k not in self. __evaluationMemory :
87 self. __evaluationMemory [k] = self. __evaluationFunc (test)
88 if self. __numTests is None:
89 self. __numTests = 1
90 else :
91 self. __numTests += 1
92
93 return self. __evaluationMemory [k]
94
95
96 # Returns an optimal valuation
97 def optimalValuation (self):
98 if self. __optValuation is None:
99 self. calculateOptimum ()

100
101 return self. __optValuation
102
103 # Returns the score of an optimal valuation
104 def optimalScore (self):
105 if self. __optScore is None:
106 self. calculateOptimum ()
107
108 return self. __optScore
109
110 # Returns the number of tests performed during optimisation .
111 def numTests (self):
112 if self. __numTests is None:
113 self. calculateOptimum ()
114
115 return self. __numTests
116
117
118 # Performs optimisation routine
119 # then sets __optValuation and __optScore
120 # (__numTests is set implicitly by __evaluate)
121 def calculateOptimum (self):
122
123 opt = self. __optimise (self.__vartree , {})
124
125 if opt is None:
126 self. __successful = False
127 self. __resetStoredVals ()
128 else :
129 self. __optValuation , self. __optScore = opt
130 self. __successful = True
131
132 return None
133
134
135 # Checks if the optimisation was a success .
136 # This will only be false if no evaluations could be successfully performed .
137 def successful (self):
138 return self. __successful
139
140
141 # The actual optimisation function
142 def __optimise (self , vt , presets):
143
144 # First , calculate all the possible valuations at this node .

72

145 # (this is used in both the branch and leaf node cases)
146
147 # The valuations at this level are the cross product of the possible

values of the variables at this level .
148
149 # List of lists of (variable name , possible value) pairs (each sublist

deals with a single variable)
150 topLevelVarVals = [[(var , val) for val in self. __possValues [var]] for var

in vt.vars]
151
152 # List of dictionaries of possible tests (each dict contains a single

value for each var at this level)
153 topLevelTests = map(dict , crossproduct (topLevelVarVals))
154
155 # These dictionaries only contain mappings for variables at this level .
156 # So we merge the existing presets into topLevelTests
157 [t. update (presets) for t in topLevelTests] # (update topLevelTests in

place)
158
159
160
161 # Now split the branch and leaf cases .
162
163 if vt. subtrees != []: # Then vt. subtrees is nonempty and so vt is a

branch node .
164
165 # For each valuation , we must optimise the subtrees ,
166 # then we can find the optimal valuation .
167
168 # possValuations will store valuations for ALL variables , which have

optimised subtrees .
169 possValuations = []
170
171 for valuation in topLevelTests :
172
173 # To optimise the subtrees , we must choose arbitrary values
174 # for the variables in the other subtrees .
175 # These are arbitrary because different subtrees are independent .
176
177 valuation . update (self. __restrictArb (vt. flattenchildren () , self.

__possValues))
178
179 # Now valuation contains mappings for ALL variables .
180 # before testing each subtree , the variables in that subtree

should be removed from the valuation .
181
182 for st in vt. subtrees :
183
184 localValuation = valuation .copy ()
185
186 # Remove the variables in this subtree from the valuation
187 for v in st. flatten ():
188 del localValuation [v]
189
190
191 # Recursively optimise the subtree
192 # the local optValuation returned here will be the same as

valuation
193 # for all variables opther than those within st
194 # so we can overwrite it here .
195 # This also means we ’accumulate ’ an optimum valuation

overall .
196 recurse = self. __optimise (st , localValuation)
197
198 if recurse is None:
199 return None # There are no valuations of the subtrees

which can be successfuly evaluated .
200
201 valuation , localOptScore = recurse
202
203 # Because we overwrote valuation , it is now set so that
204 # all subtree varaibles are set to their optimums
205 # (for this valuation of vt)
206

73

207 # So valuation now holds optimal settings for this choice of
variables st this level .

208 # And localOptScore is set to the score of the optimum for this
choice at this level .

209
210 possValuations . append (valuation)
211
212
213 # Once the loop is complete , possValuations contains one entry
214 # for each possible valuation at this level , but with the subtree

variables
215 # set to their optimums for that particular valuation at this level .
216
217 # First filter out any tests which failed (evaluate returns None).
218 possValuations = filter ((lambda v: (v is not None) and (self.

__evaluate (v) is not None)), possValuations)
219 if possValuations == []:
220 return None # There are no tests which evaluated correctly .
221
222 # Now choose the best to be returned .
223 optValuation = self. __best (possValuations , key=self. __evaluate)
224 optScore = self. __evaluate (optValuation)
225
226
227 else : # Then vt. subtrees is empty and so vt is a leaf node .
228
229 # Each valuation has all the variables set , we simply evaluate them
230 # The one with the minimum (or max) score is consisdered the best .
231
232 # First filter out any tests which failed (evaluate returns None).
233 topLevelTests = filter (lambda v: self. __evaluate (v) is not None ,

topLevelTests)
234 if topLevelTests == []:
235 return None # There are no tests which evaluated correctly .
236
237 # Now choose the best to be returned .
238 optValuation = self. __best (topLevelTests , key=self. __evaluate)
239 optScore = self. __evaluate (optValuation)
240
241
242 # In either case , we have found optimums for this level .
243
244 return (optValuation , optScore)
245
246
247
248 # Return a dictionary mapping each variable to one of its possible values
249 # in this case we choose the first one which was listed
250 def __restrictArb (self , vs , vals):
251 return dict ([(var ,vals[var][0]) for var in vs])
252
253
254
255
256 # ###
257
258
259
260 # Return the cross product of a list of lists
261 def crossproduct (xss):
262 cp = [[]]
263 for xs in xss:
264 cp = [xs2 + [x] for x in xs for xs2 in cp]
265 return cp
266
267
268
269
270
271 if __name__ == " __main__ ":
272 print __doc__

74

vartree.py

1 """
2 Autotuning System
3
4 vartree .py
5
6 Defines the VarTree class .
7 Provides a parser , vt_parse , for converting strings to instances of VarTree .
8 """
9

10
11 # VarTree parser generated with wisent
12 from vartree_parser import Parser
13 # Built in regex based lexer
14 from re import Scanner
15
16
17
18
19 # The VarTree data type ##
20
21 class VarTree :
22 # vars is a list of strings of variable names at the current node
23 # subtrees is a list of VarTree which are the children of the node
24
25 def __init__ (self , vars , subtrees):
26 self.vars = vars
27 self. subtrees = subtrees
28
29 def __str__ (self): # Convert the VarTree to a string representastion
30 allStrs = self.vars + [st. __str__ () for st in self. subtrees]
31 return "{" + ", ".join(allStrs) + "}"
32
33 def flatten (self): # Return a list of all the variables in the tree
34 return self.vars + self. flattenchildren ()
35
36 def flattenchildren (self): # Return a list of all variables in child subtrees
37 return sum ([st. flatten () for st in self. subtrees], [])
38
39
40 # ###
41
42
43
44
45 # Some example VarTrees , used for testing ######################################
46
47 # {A, B, C, D}
48 sample0 = VarTree (["A", "B", "C", "D"], [])
49
50 # {A, B, {C, D}, {E, F}}
51 sample1 = VarTree ([’A’,’B’], [VarTree ([’C’,’D’] ,[]) , VarTree ([’E’,’F’] ,[])])
52
53 # {A, B, {I, {C, D}, {E, F}}, {G, H}}
54 sample2 = VarTree (["A","B"], [VarTree (["I"],[VarTree (["C","D"] ,[]) , VarTree (["E",

"F"] ,[])]) , VarTree (["G","H"] ,[])])
55
56
57 # ###
58
59
60
61
62 # A helper function used to return a list of the variable names used in a (string

) VarTree
63 def get_variables (s):
64 return vt_parse (s). flatten ()
65
66
67
68
69 # The Lexer / Parser ###

75

70
71
72 def vt_parse (str):
73
74 # We ’ll memoise this function so several calls on the same input don ’t
75 # require re - parsing .
76
77 if(str in vt_parse . memory):
78 return vt_parse . memory [str]
79
80
81 # Use the built in re. Scanner to tokenise the input string .
82
83 def s_lbrace (scanner , token): return (" LBRACE ", token)
84 def s_rbrace (scanner , token): return (" RBRACE ", token)
85 def s_comma (scanner , token): return (" COMMA ", token)
86 def s_varname (scanner , token): return ("VAR", token)
87
88 scanner = Scanner ([
89 (r’{’, s_lbrace),
90 (r’}’, s_rbrace),
91 (r’,’, s_comma),
92 (r’[a-zA -Z_]\w*’, s_varname),
93 (r’\s+’, None)
94])
95
96 tokens = scanner .scan(str)
97
98 # tokens is a pair of the tokenised string and any " uneaten " part .
99 # check the entire string was eaten .

100
101 if(tokens [1] != ’’):
102 print " Could not read the variable tree given :"
103 print str
104 # print " could not lex : " + tokens [1]. __str__ ()
105 exit ()
106
107
108 tokens = tokens [0] # Just the list of tokens .
109
110 p = Parser ()
111 try:
112 tree = p. parse (tokens)
113 except p. ParseErrors , e:
114 print " Could not read the variable tree given :"
115 print str
116 exit ()
117
118
119
120 # A function converting the parse tree to a VarTree .
121 def pt_to_vt (tree):
122
123 # If the current node is a VARTREE ,
124 # then create a new VarTree object and fill it with the children of this

node .
125 #
126 # If the current node is not a VARTREE , then something has gone wrong .
127
128 def is_var (t):
129 return t[0] == "VAR"
130
131 def is_vt (t):
132 return t[0] == " VARTREE " or t[0] == " VARTREE_BR "
133
134 if is_vt (tree):
135
136 vars = filter (is_var , tree [1:])
137 vars = map(lambda t: t[1] , vars)
138
139 children = filter (is_vt , tree [1:])
140 children = map(pt_to_vt , children)
141
142 return VarTree (vars , children)

76

143
144 else :
145 return None # Should not be reached
146
147
148
149
150 # Put the result in the memoisation table .
151 vt_parse . memory [str] = pt_to_vt (tree)
152
153
154 # Check nothing went wrong
155 if vt_parse . memory [str] is None:
156 print " Could not read the variable tree given :"
157 print str
158 # print " error in conversion from parse tree to vartree "
159 exit ()
160
161
162 # Finally , check there is no repettition of variables in the VarTree .
163 # Each variable can appear at most once .
164 def hasDups (xs):
165 return len(set(xs)) != len(xs)
166
167 if hasDups (vt_parse . memory [str]. flatten ()):
168 print "A variable was repeated in the variable tree."
169 print " Variables can only appear once."
170 exit ()
171
172
173 return vt_parse . memory [str]
174
175
176 # Define the memoisation table , which will be satic inside vt_parse
177 vt_parse . memory = {}
178
179
180
181
182
183
184 # ###
185
186
187
188
189
190
191 # A tree printer for VarTree ###
192
193
194
195 # {A, B, {I, {C, D}, {E, F}}, {G, H}}
196 #
197 # {A, B}
198 # |
199 # +---+--------+
200 # | |
201 # {I} {G, H}
202 # |
203 # +----+---+
204 # | |
205 # {C, D} {E, F}
206
207
208
209
210 # N.B. this could easily be wider than the terminal .
211 def treeprint (vt):
212
213 return "\n".join(print_vt (vt)) + "\n"
214
215
216 def treeprint_str (s):

77

217 return treeprint (vt_parse (s))
218
219
220
221 # Trees are represented as a list of lines
222 def print_vt (vt):
223
224
225 if vt. subtrees : # Recursive case
226
227 # Recursively get subtrees
228 subtrees = map(print_vt , vt. subtrees)
229
230 # find the max height of a subtree
231 subtreeheight = len(max(subtrees , key=len))
232
233 # pads a subtree to be subtreeheight layers tall and then to be square
234 # (no ragged edge)
235 def padout (st):
236
237 # Add empty lines to the subtree until it is subtreeheight layers

tall
238 stheight = len(st)
239
240 newlines = [""] * (subtreeheight - stheight)
241
242 st2 = st + newlines
243
244 # Pad each line to be the same width
245 linewidth = len(max(st2 , key=len))
246
247 st3 = [line + (" " * (linewidth - len(line))) for line in st2]
248
249 return st3
250
251 subtrees = map(padout , subtrees)
252
253
254 # Add connecting bars to the top of each subtree
255 subtrees = [["|". center (len(st [0]))] + st for st in subtrees]
256
257
258 # Stick the subtrees together
259 tree = subtrees [0]
260
261 for st in subtrees [1:]:
262 # Add st to tree , with a bit of padding .
263
264 tree = [tline + " " + app for (tline , app) in zip(tree , st)]
265
266
267
268 # Add the connecting branches above the subtrees
269
270 # The width of the whole tree
271 fullwidth = len(tree [0])
272
273
274 # Generate the wide connecting branch
275 # By looking at the top line of tree (which is now the upwards pointing
276 # connecting branches) and basically copying it.
277 connectingbranch = ""
278 numencountered = 0
279
280 for c in tree [0]:
281 if c == "|":
282 connectingbranch += "+"
283 numencountered += 1
284 else :
285 if numencountered <= 0 or numencountered >= len(subtrees):
286 connectingbranch += " "
287 else :
288 connectingbranch += "-"
289

78

290
291
292
293 # Add this node on the very top
294
295 topline = VarTree (vt.vars , []). __str__ (). center (fullwidth)
296 topconnector = "|". center (fullwidth)
297
298
299
300 # Add one final "+" at the point in connectingbranch which will connect

upwards .
301 # Again , we will cheat a little by copying the position of the | in

topconnector .
302 midpoint = topconnector .find("|")
303
304 connectingbranch = connectingbranch [: midpoint] + "+" + connectingbranch [

midpoint +1:]
305
306
307
308
309
310 # Put it all together to finish
311
312 tree = [topline , topconnector , connectingbranch] + tree
313
314
315 return tree
316
317
318 else : # Base case
319
320 return [" " + vt. __str__ () + " "]
321
322
323
324
325
326 # ###
327
328
329
330
331
332 if __name__ == " __main__ ":
333 print __doc__

79

tune_conf.py

1 """
2 Autotuning System
3
4 tune_conf .py
5
6 Sets up the configuration for the optimisation . The settings (variable names ,
7 testing methods , etc .) are read from a configuration file provided .
8 """
9

10
11 from ConfigParser import RawConfigParser
12 from vartree import get_variables
13
14
15 # The settings function takes the name of a configuration file , and returns the
16 # settings to be used for the optimisation .
17 def get_settings (configFile):
18
19
20 # The settings dictionary will contain the configuration data .
21 settings = {}
22
23
24
25 # Read Configuration File ##
26
27 config = RawConfigParser ()
28
29 config .read(configFile)
30
31
32 # Must have sections [variables], [values] and [testing]
33 if not(config . has_section (’variables ’) and config . has_section (’values ’) and

config . has_section (’testing ’)):
34 print " Config file does not contain all the sections [variables], [values

] and [testing]."
35 exit ()
36
37 # Must have option ’variables ’ in [variables]
38 if not(config . has_option (" variables ", " variables ")):
39 print " Config file does not contain the option ’variables ’ in section [

variables]."
40 exit ()
41
42
43 # Get variable tree
44 varTree = config .get(" variables ", " variables ")
45
46 settings [’vartree ’] = varTree
47
48 variables = get_variables (varTree)
49
50
51 # Must have the correct variables defined in [values]
52 if not(all ([config . has_option (" values ", v) for v in variables])):
53 print " Config file does not contain possible values (in [values]) for all

the variables defined in [variables]."
54 exit ()
55
56
57 # possValues is a dictionary keyed by variable names [strings] with values

which are lists of possible values [also string]
58 possValues = {}
59
60 for thisVar in variables :
61 possValues [thisVar] = [x. strip () for x in config .get(" values ", thisVar).

split (",")]
62
63 settings [’possValues ’] = possValues
64
65

80

66
67 # Must have one of options ’test ’ or ’evaluation ’ in [testing]
68 if not(config . has_option (" testing ", "test") or config . has_option (" testing ", "

evaluation ")):
69 print " Config file does not contain either ’test ’ or ’evaluation ’ in

section [testing]."
70 exit ()
71
72 # Must have only one of options ’test ’ or ’evaluation ’ in [testing]
73 if (config . has_option (" testing ", "test") and config . has_option (" testing ", "

evaluation ")):
74 print " Config file contains both ’test ’ and ’evaluation ’ in section [

testing], only one may be set."
75 exit ()
76
77
78 # Set whichever of ’compiler ’, ’test ’, ’evaluation ’, ’cleanup ’ are present .
79 # Also build functions to create the actual compile (etc .) commands to run .
80 # Given a test ID n and a mapping of variables to values , returns an
81 # executable (by the shell) string .
82 if(config . has_option (" testing ", " compiler ")):
83 settings [’compiler ’] = config .get(" testing ", " compiler ")
84
85 def compiler_mkStr (n, varDict):
86 s = settings [’compiler ’]. replace ("%% ID %%", str(n))
87 for varName , varVal in varDict . iteritems ():
88 s = s. replace ("%" + varName + "%", str(varVal))
89 return s
90
91 settings [’compiler_mkStr ’] = compiler_mkStr
92
93 if(config . has_option (" testing ", "test")):
94 settings [’test ’] = config .get(" testing ", "test")
95
96 def test_mkStr (n, varDict):
97 s = settings [’test ’]. replace ("%% ID %%", str(n))
98 for varName , varVal in varDict . iteritems ():
99 s = s. replace ("%" + varName + "%", str(varVal))

100 return s
101
102 settings [’test_mkStr ’] = test_mkStr
103
104 if(config . has_option (" testing ", " evaluation ")):
105 settings [’evaluation ’] = config .get(" testing ", " evaluation ")
106
107 def evaluation_mkStr (n, varDict):
108 s = settings [’evaluation ’]. replace ("%% ID %%", str(n))
109 for varName , varVal in varDict . iteritems ():
110 s = s. replace ("%" + varName + "%", str(varVal))
111 return s
112
113 settings [’evaluation_mkStr ’] = evaluation_mkStr
114
115 if(config . has_option (" testing ", " cleanup ")):
116 settings [’cleanup ’] = config .get(" testing ", " cleanup ")
117
118 def cleanup_mkStr (n, varDict):
119 s = settings [’cleanup ’]. replace ("%% ID %%", str(n))
120 for varName , varVal in varDict . iteritems ():
121 s = s. replace ("%" + varName + "%", str(varVal))
122 return s
123
124 settings [’cleanup_mkStr ’] = cleanup_mkStr
125
126
127
128
129 # Check if they have chosen to maximise or minimise the FOM .
130 if(config . has_option (" testing ", " optimal ")):
131 if(config .get(" testing "," optimal "). lower () in [’max ’, ’min ’]):
132 settings [’optimal ’] = config .get(" testing "," optimal "). lower ()
133 else :
134 print " Config file contains an invalid setting for ’optimal ’ in

section [testing]."

81

135 exit ()
136 else :
137 # Default to min
138 settings [’optimal ’] = ’min ’
139
140
141
142 # Check if they have set a number of tests to be run.
143 if(config . has_option (" testing ", " repeat ")):
144 settings [’repeat ’] = int(config .get(" testing "," repeat "))
145
146 # Check for invalid input
147 if settings [’repeat ’] < 1:
148 settings [’repeat ’] = 1
149 else :
150 # Default to 1
151 settings [’repeat ’] = 1
152
153
154
155
156 # Check how they want to aggregate multiple runs of tests .
157 if(config . has_option (" testing ", " overall ")):
158 if(config .get(" testing "," overall "). lower () in [’max ’, ’min ’, ’med ’, ’avg ’

]):
159 settings [’overall ’] = config .get(" testing "," overall "). lower ()
160 else :
161 print " Config file contains an invalid setting for ’overall ’ in

section [testing]."
162 exit ()
163 else :
164 # Default to min
165 settings [’optimal ’] = ’min ’
166
167
168
169
170 # Check if they want to log tests .
171 if(config . has_option (" testing ", "log")):
172 settings [’log ’] = config .get(" testing ","log")
173
174 else :
175 # Default to None
176 settings [’log ’] = None
177
178
179
180
181
182
183
184 return settings
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199 if __name__ == " __main__ ":
200 print __doc__

82

logging.py

1 """
2 Autotuning System
3
4 logging .py
5
6 Used to keep a log of tests being run , and to output these logs.
7
8 Does not directly interface with the optimisation , but tests can be logged as
9 they are run from the evaluate () function .

10 """
11
12
13 # usage :
14 #
15 # Create a test (by passing a new unique test id)
16 # Add one or more test results with logTest
17 # Add the overall result with logFinal
18 #
19 # The tests can then be dumped out with writeCSV .
20
21
22 class TestLog :
23
24 def __init__ (self , pr= False):
25 self. __tests = {}
26 self. __vars = set ()
27 self. __printResult = pr
28
29
30 def createTest (self , testId , valuation):
31 self. __tests [testId] = SingleTest (testId , valuation)
32 self. __vars = self. __vars . union (set(valuation .keys ()))
33
34
35 def logTest (self , testId , score):
36 if testId in self. __tests :
37 self. __tests [testId]. results . append (score)
38
39
40 def logOverall (self , testId , score):
41 if testId in self. __tests :
42 self. __tests [testId]. overall = score
43
44
45 def writeCSV (self , filename):
46
47 # Open the file
48 try:
49 f = open(filename , ’w’)
50 except IOError :
51 print " Could not open log file for writing ."
52 return
53
54 # List of variables , because we need ordering here
55 vars = list(self. __vars)
56
57 # Number of results per test
58 nResults = 0
59 for t in self. __tests . values ():
60 nResults = max(nResults , len(t. results))
61
62
63 # Create title line
64 f. write (", ".join ([" TestNo "] + vars + [" Score_ "+str(n) for n in range (1,

nResults +1)] + [" Score_Overall "]) + "\n")
65
66 # Create a string for each line
67 for k, t in sorted (self. __tests . iteritems ()):
68
69 # Add test no.
70 l = [str(t. testId)]

83

71
72 # Add variable values
73 for v in vars:
74 if v in t. valuation :
75 l. append (str(t. valuation [v]))
76 else :
77 l. append (’’)
78
79 # Add scores
80 l += [str(x) for x in t. results]
81 l += [""] * (nResults - len(t. results))
82
83 # Add overall score
84 if t. overall is None:
85 l. append (’’)
86 else :
87 l. append (str(t. overall))
88
89 # Finished line
90 f. write (", ".join(l) + "\n")
91
92
93 # Done
94 f. close ()
95
96 if self. __printResult :
97 print "A testing log was saved to " + filename
98
99

100
101
102
103 class SingleTest :
104
105 def __init__ (self , testId , valuation):
106 self. testId = testId
107 self. valuation = valuation
108 self. results = []
109 self. overall = None

84

airfoil_autotuning.conf

1 # Autotuning System
2 # Configuration file for tuning airfoil code .
3
4 [variables]
5
6 # This section must contain a definition of variables , with a list of variable

names
7 # These variable names will be varied over to find an optimal valuation .
8 # The possible values for each variable are specified in the next section .
9

10 variables = {L1_CACHE , { OP_PART_SIZE_1 }, { OP_PART_SIZE_2 }}
11
12
13 [values]
14
15 # This section gives the possible values that each variable above can take .
16 # These are specified as a list for each variable .
17
18 OP_PART_SIZE_1 = 32, 128 , 512 , 1024 , 1536
19 OP_PART_SIZE_2 = 64, 128 , 192 , 256 , 320 , 384 , 448 , 512 , 576 , 640 , 704 , 768 , 832 ,

896 , 960 , 1024
20
21 L1_CACHE = cg , ca
22
23
24 [testing]
25
26 # This section defines how to compile (if needed) and run the tests .
27 #
28 # 1. How to compile each test (this would typically be a makefile or similar)
29 # 2. How to check each test . This might be a shell script or similar .
30 # This should take the name of the executable as an argument and return
31 # some figure -of - merit for that test (typically execution time).
32 # 3. How to clean up each test (typically deleting the test file).
33
34
35 # compiler
36 #
37 # This sets the command to issue to compile the program
38 # e.g. a makefile or similar
39 #
40 # Use %% ID %% for the test number , to generate unique files .
41 # You may also use your variables defined above e.g. % FOO %, %BAR % and so on
42 #
43 # This may be omitted , in which case no compilation will be performed .
44
45 compiler = make -f Makefile_Autotuning -B airfoil_cuda OP_PART_SIZE_1 =%

OP_PART_SIZE_1 % OP_PART_SIZE_2 =% OP_PART_SIZE_2 % L1_CACHE =% L1_CACHE %
46
47
48 # testing
49 #
50 # Exactly one of the options ’test ’ or ’evaluate ’ should be set .
51
52 # test
53 # The command used to run a test .
54 # When this is used , the Autotuning system will time the execution of the test
55 # and use this timing to optimise the variables .
56 # e.g. the executable produced by the compilation step above .
57 #
58 # Use %% ID %% for the test number , so each test is unique .
59 # You may also use your variables defined above e.g. % FOO %, %BAR % and so on
60
61 test = ./ airfoil_cuda
62
63
64 # evaluate
65 # This allows you to define your own figure of merit for the tests .
66 # This command is run and the final line of output is assumed to be a number
67 # which will be used to optimise the variables .
68 # e.g. a command returning the size of the executable generated .

85

69 #
70 # Use %% ID %% for the test number , so each test is unique .
71 # You may also use your variables defined above e.g. % FOO %, %BAR % and so on
72
73 # evaluation =
74
75
76 # cleanup
77 #
78 # This sets the command to be run to clean up any tests , if required .
79 # e.g. removing the executables created by the compilation step .
80 #
81 # Use %% ID %% for the test number , so each test is unique .
82 # You may also use your variables defined above e.g. % FOO %, %BAR % and so on
83 #
84 # This may be omitted , in which case no cleanup will be performed .
85
86 # cleanup =
87
88
89 # optimal
90 #
91 # This setting determines whether large or small results are considered better .
92 # It can be set to ’min ’ (the default), or ’max ’.
93 # ’min ’ will cause the optimiser to find the minimum possible score .
94 # ’max ’ will cause the optimiser to find the maximum possible score .
95 #
96 # For timing , it would be normal to use ’min ’ to find the shortest time .
97 # However , it may be useful to use ’max ’ if you have some custom figure of merit
98 # which should be maximised .
99

100 optimal = Min
101
102
103 # repeat
104 #
105 # This setting gives the number of times each test should be run .
106 # It is optional and defaults to 1.
107 # The average score from all the tests will be taken and used as the score for
108 # the test overall .
109
110 repeat = 3
111
112
113 # overall
114 #
115 # If multiple runs are being used for each test (using ’repeat ’), then this
116 # option defines how the multiple scores should be combined into the overall
117 # score for that test .
118 #
119 # The possible values are ’min ’ (default), ’max ’, ’med ’ and ’avg ’
120 # These will take the minimum , maximum , median and average , repsectively of all
121 # the repeated test scores and use it as the overall score by which each test
122 # is judged .
123
124 overall = min
125
126
127 # log
128 #
129 # If defined , this is the name of a CSV file which a log of the tests
130 # performed will be written to.
131 # If not defined , no log will be saved .
132 #
133 # This file will be overwritten !
134
135 log = ../ airfoil_autotuning .csv

86

87

