Flamingo Auto-Tuning
» Tutorial e

Ben Spencer
ben@mistymountain.co.uk

Last updated: 27™ September 2011

Introduction

This tutorial will lead you through a step-by-step description of set-
ting up and tuning an example program. I'll explain each step as we go,
so working through the tutorial should give you enough information to
start tuning your own programs. The program we’ll be tuning is a blocked
matrix-matrix multiplication test, included with the auto-tuner as an ex-
ample. If you have any comments or questions about the tuner or this
tutorial then please feel free to get in touch.

Contents

What YOU'TLNEEAc.eoieiiiiiiiiiieeeeeneeeeieseeteeee et s 2
What We're AIMing FOT........cooiiiiireeiinineeeenetetese et 3
The Build Chain.......ccocccniiiniiiiniiiiiiiieeen 6
Modifying The Programccceceevererireenenenineetenieneeeeseeneseeseeseesneseeneens 6
Writing a Configuration File ... 10
RUNNING the TUNET ...c.vovuiiiiiiiieieteieseetetee sttt sttt 13
The RESULLSccoiiiiiiiiiictc s 14
Using a Custom Figure-0f-MerTitceceveerererneenenenieeereseseeeesesieeeeeene 17
THE BN ..ttt ettt st et ettt et s st 17

mailto:ben@mistymountain.co.uk

What You'll Need

The auto-tuner
This is the software which performs the tuning, and is found in the
main Autotuning directory. The tuner can be run with the command
~/Autotuning/autotune and performs a short self-demonstration if no
arguments are provided.

A program to tune

This tutorial will lead you through the setup and tuning of a small ma-
trix multiplication program, which is included as an example with the
tuner. The example code can be found in the examples/matrix direc-
tory. If you are going to follow along, the examples/matrix/original
directory contains the unmodified code, which we will use as a starting
point. The final version of the program we end up with can be found in
examples/matrix/modified.

The source code for this program is shown in Listing 2.

Programming tools
We'll be editing and compiling the program. So you'll need a text editor
and any program compilation tools required for your program. For this
tutorial we'll be using gcc and make under Linux (this is not required by
the tuner, which can tune a program using any build tools).

Installing the Tuner

To install the tuner, simply extract the .tgz file to some convenient location.
In this tutorial, I have extracted it into my home directory, so the tuner is run
with the command~/Autotuning/autotune.

You must also make sure you have Python version 2.5 or later. To check
if Python is installed and which version you have, run the command python
--version. For more information on installing Python see www.python.org.

What We’re Aiming For

The program calclates the product of two matrices: C' := AB. I'm represent-
ing the matrices simply by a 2D array. The simplest implementation (shown
below) processes the array C' row-by-row. To calculate an element C[i][j], we
need to read in an entire row of A and an entire column of B. The speed of
the program can be improved by increasing the re-use of any data in the fast
registers or L1 cache.

} /% Perform C = C + A%B %/

| for(i=0; i<C_ROWS; i++)

\ for(j=0; j<C_COLS; j++)

\ for(k=0; k<A_COLS; k++)

} CL[il1[j1 += ALil[k] * BIkI[3j1;

Listing 1: The ‘naive’ implementation of matrix-matrix multiplication.
This is replaced by lines 62—69 of matrix.c

For large matrices, row-by-row processing will not allow thr re-use of data
from calculating C[i][j] when calculating C[i][j + 1], even though some of this
will be the same, or at least fetched in the same cache lines. The idea of this
program is to split the matrix into blocks and process one block at a time.
This allows more data re-use and so the program is faster.

The block size for each loop is controlled by the parameters BLOCK _I,
BLOCK_J and BLOCK _K. Choosing good values (that is, giving good per-
formance) for these parameters would require detailed knowledge of how
memory is accessed and cached on the machine being used. How large is
the L1 cache? How long are cache lines?

We will use the auto-tuner to automatically choose these parameter val-
ues and to see how much difference the choice can make to the program’s
performance.

[I S

© ©® N o

matrix.c (Original Version)

Autotuning System

*
*

* matrix.c

% ORIGINAL VERSION
*

*

*

*

A simple blocked matrix-matrix multiply algorithm,
partitioned by the block size. This is used as an example and
demonstration of the auto-tuner.

#include <stdio.h>
#include <math.h>

/* Define the size of the matrices to work on. */
#define A_COLS 512

#define A_ROWS 512

#define B_COLS 512

#define B_ROWS A_COLS

#define C_COLS B_COLS

#define C_ROWS A_ROWS

/* The block size for the multiplication */
#define BLOCK_I 16
#define BLOCK_J 16
#define BLOCK_K 16

int main(void)

{
double A[A_ROWS][A_COLS], B[B_ROWS][B_COLS], C[C_ROWS][C_COLS];
int i, j, k, i_bl, j_bl, k_bl;

printf("Blocked Matrix-Matrix Multiplication\n");
/* Generate some arbitrary sample data. */

for(i=0; i<A_ROWS; i++)
for(j=0; j<A_COLS; j++)
A[i1[j] = exp(-fabs(i-j));

for(i=0; i<B_ROWS; i++)
for(j=0; j<B_COLS; j++)
B[i]l[j] = exp(-fabs(i-j));

/* Set C[I1[] = 0 first %/
for(i=0; i<C_ROWS; i++)
for(j=0; j<C_COLS; j++)
Clil[j] = 0;

N o g os W

matrix.c (Original Version, Continued)

/* Blocked Multiplication: C = AB */
/* Instead of processing an entire row of C at a time,
* process in small blocks of dimensions BLOCK_I * BLOCK_J. Elements

required from A and B are also processed in blocks.

*

*

This should improve local memory reuse. */

printf (" (BLOCK_I = %d, BLOCK_J = %d, BLOCK_K = %d)\n", BLOCK_I, BLOCK_J,
BLOCK_K) ;

/* Perform C = C + A*B */
for(i=0; i<C_ROWS; i+= BLOCK_I)
for(j=0; j<C_COLS; j+= BLOCK_J)
for(k=0; k<A_COLS; k+= BLOCK_K)
for(i_bl=i; i_b1l<(i+BLOCK_I) && i_b1<C_ROWS; i_bl++)
for(j_bl=j; j_bl<(j+BLOCK_J) &% j_bl<C_COLS; j_bl++)
for(k_bl=k; k_bl<(k+BLOCK_K) && k_bl<A_COLS; k_bl++)
Cl[i_blI1[j_bll += A[i_bl1[k_bl]l * B[k_bll[j_bll;

/* Use C ... %/

return O;

Makefile (Original Version)

CC = gcc
CFLAGS = -1m

matrix: matrix.c
$(CC) $(CFLAGS) -o matrix matrix.c

Listing 2: The original version of matrix.c and the Makefile used to
compile it, before any modification.

The Build Chain

Before tuning this program, we need to be clear about exactly what happens
when we compile and run it. For this exampleit is fairly simple, but it is worth
being sure of, especially when you try to tune a more complex program.

To compile the program, we run make. This reads the Makefile, which in
turn contains a call to gcc, which is run by make. gcc reads in the source file
matrix.c and compiles it into the executable file matrix. This executable can
be run with the command . /matrix.

Modifying The Program

To perform the auto-tuning, the tuner will need to test various different set-
tings of the parameters. So to begin with, we must modify the program a little
to allow the parameters to be set at compile-time by the auto-tuner.

We want to tune the three block size parameters: BLOCK_I, BLOCK_J
and BLOCK_K. The first thing to do is wrap the definition of each in an
#ifndef block, so they can be set by the compiler instead of being constant:

|
| #ifndef BLOCK_I

\ #define BLOCK_I 1
| #endif

\

\

After this change, it is possible to set the parameters using compiler op-
tions. If you've made these modifications you can try it; for gcc the option we
need is -D NAME=VALUE.

$ gcc -1m -o matrix matrix.c

$./matrix

Blocked Matrix-Matrix Multiplication

(BLOCK_I = 1, BLOCK_J = 1, BLOCK_K = 1)

$ gcc -1m -o matrix matrix.c -D BLOCK_I=32 -D BLOCK_J=16 -D BLOCK_K=8
$./matrix

Blocked Matrix-Matrix Multiplication

(BLOCK_I = 32, BLOCK_J = 16, BLOCK_K = 8)

$

We also need to modify the Makefile so it will pass the parameters to
the compiler. The parameters are supplied as arguments to make simply as
NAME=VALUE pairs and can then be used within the Makefile using $(NAME).
This allows us to supply the parameters passed to make as the -D arguments
to gcc.

‘ gce -o matrix matrix.c -D BLOCK_I=$(BLOCK_I) ...

Once this is done, we can check that the parameter values are being cor-
rectly passed through the build chain. The -B option forces make to compile,
even if there has been no change to the source code. make usually only re-
compiles a file if the source code has been modified, but in this case only the
block size parameters passed to gcc have been changed, so we need to force
a recompilation.

$ make -B BLOCK_I=3 BLOCK_J=4 BLOCK_K=5

gcec -1m -o matrix matrix.c \
-D BLOCK_I=3 \
-D BLOCK_J=4 \
-D BLOCK_K=5

$./matrix

Blocked Matrix-Matrix Multiplication

(BLOCK_I = 3, BLOCK_J = 4, BLOCK_K = 5)

$

The final versions of matrix.c and the Makefile are given in Listing 3.

Aside: Make sure the test takes long enough

We'll add a loop to the program which performs the multiplication multi-
ple times. This means the running time of the program is dominated by the
time taken by the multiplication, so the program’s ‘overheads’ will not add too
much noise to the results. Any significant difference in the running time will
be due to changes in the parameter values, not to random fluctuations in the
time required to allocate memory for the arrays, and so on.

/* For timing the test, repeat the multiplication a number of times */
#define TEST_REP 5

for(rep=0; rep<TEST_REP; rep++){

}

matrix.c (Modified Version)

/*
* Autotuning System
*
* matrix.c
* AUTO-TUNING VERSION
*
* A simple blocked matrix-matrix multiply algorithm,
* partitioned by the block size. This is used as an example and
* demonstration of the auto-tuner.

#include <stdio.h>
#include <math.h>

/% Define the size of the matrices to work on. */
#define A_COLS 512

#define A_ROWS 512

#define B_COLS 512

#define B_ROWS A_COLS

#define C_COLS B_COLS

#define C_ROWS A_ROWS

/* The block size for the multiplication */
#ifndef BLOCK_I
#define BLOCK_I 1
#endif
#ifndef BLOCK_J
#define BLOCK_J 1
#endif
#ifndef BLOCK_K
#define BLOCK_K 1
#endif

/% For timing the test, repeat the multiplication a number of times */
#define TEST_REP 5

int main(void)

{
double A[A_ROWS][A_COLS], B[B_ROWS][B_COLS], C[C_ROWS][C_COLS];
int i, j, k, i_bl, j_bl, k_bl, rep;

printf("Blocked Matrix-Matrix Multiplication\n");
/* Generate some arbitrary sample data. */
for(i=0; i<A_ROWS; i++)
for(j=0; j<A_COLS; j++)
ATi1[j] = exp(-fabs(i-j));
for(i=0; i<B_ROWS; i++)

for(j=0; j<B_COLS; j++)
B[i]l[j] = exp(-fabs(i-j));

© © N e e e W N

Makefile (Modified Version, Continued)

/* Blocked Multiplication: C = AB */

/* Instead of processing an entire row of C at a time,
* process in small blocks of dimensions BLOCK_I * BLOCK_J. Elements
* required from A and B are also processed in blocks.
* This should improve local memory reuse. */

printf (" (BLOCK_I = %d, BLOCK_J = %d, BLOCK_K = %d)\n", BLOCK_I, BLOCK_J,
BLOCK_K) ;
for(rep=0; rep<TEST_REP; rep++){

/* Set C[1[] = 0 first */
for(i=0; i<C_ROWS; i++)
for(j=0; j<C_COLS; j++)
C[il[j] = 0;

/% Perform C = C + A*B */
for(i=0; i<C_ROWS; i+= BLOCK_I)
for(j=0; j<C_COLS; j+= BLOCK_J)
for(k=0; k<A_COLS; k+= BLOCK_K)
for(i_bl=i; i_bl<(i+BLOCK_I) && i_bl<C_ROWS; i_bl++)
for(j_bl=j; j_bl<(j+BLOCK_J) &% j_bl<C_COLS; j_bl++)
for(k_bl=k; k_bl<(k+BLOCK_K) && k_bl<A_COLS; k_bl++)
C[i_bl][j_b1l] += A[i_b1]1[k_bl]l * B[k_bll[j_bll;

/* Use C ... %/

return O;

Makefile (Modified Version)

CC = gec
CFLAGS = -1m

matrix: matrix.c
$(CC) $(CFLAGS) -o matrix matrix.c \
-D BLOCK_I=$(BLOCK_I) \
-D BLOCK_J=$(BLOCK_J) \
-D BLOCK_K=$(BLOCK_K)

Listing 3: The modified versions of matrix.c and the Makefile, which
are now ready for tuning.

Writing a Configuration File

Now that the program and build chain is ready for auto-tuning, we must cre-
ate a configuration file. This file will tell the tuner which parameters need to
be tuned, what the possible values for them are and how to compile and run
each test. The configuration file is simply a normal text file, similar to Linux
configuration files, or Windows . ini files.

The file is split into five sections: variables, values, testing, scoring and
output, which begin with a line [section_name]. Options are set using the
syntax name = value and lines beginning with # are comments.

All commands and paths must be given relative to the configuration file.

The final configuration file is shown in Listing 4, and should be saved in
the same directory as the program. A detailed description of all the con-
figuration file options and their operation can be found in the User’s Guide
(doc/user.pdf).

The [variables] Section

This section contains a single option, variables, which says which program
parameters should be optimised. For this example we simply provide the list.
It is possible to describe independences between the parameters here, which
is often useful, but not for this program. Look up 'Variable Independence’ in
the main User’s Guide for more information on this.

[variables]

variables = BLOCK_I, BLOCK_J, BLOCK_K

The [values] Section

This section lists the possible values for each variable. I've chosen quite a
wide range so I can get an idea of how blocking is ffecting the running time.
However, don't put too many possiblities in, or the tuner will have a huge
number of tests to run. Remember, as we haven't specified any independence
between the variables, every possible combination of parameter values will
be tested.

[values]

=4, 8, 16, 32, 64
BLOCK_J = 4, 8, 16, 32, 64
BLOCK_K = 4, 8, 16, 32, 64

\
\
\
| BLOCK_I
\
\
\

10

The [testing] Section

This section contains the settings which define how each test is run.

The compile option sets the command used to compile each test. For our
example, this will be a call to make, passing the parameters. Placeholders such
as %BLOCK_IY% will be subsituted with the value of BLOCK _I for each partic-
ular test. The substitution %7ID%Y% expands to a unique test ID, which is useful
when more than one test might exist at once, but is not needed here.

[testing]

compile = make -B BLOCK_I=%BLOCK_I% BLOCK_J=%BLOCK_J% BLOCK_K=}BLOCK_KY

The test option gives the command required to run each test. This com-
mand will be timed to give a score for the test.

‘ test = ./matrix

The clean option can be used to run a command after a particular test is
over (for example to remove any generated executables or object files), but
we don’t need it for our example.

The [scoring] Section

This section defines how tests are scored to determine which is best. Each
test is assigned a score, which would typically be its running time, but any
other property can be tuned.

The tuner can either minimise or maximise the score, which is chosen
with the optimal option. The defualt is to minimise, which is what we want
here. The possible settings are: min_time (the default), max_time, min and
max. When the min_time or max_time options are used, the tuner will time the
execution of the test command above.

If the options min or max are used, then the test command must calculate
its own score and output it as the final line of output. For this test, we want
to measure the running time, but custom scoring is discussed in the section
Using a Custom Figure-of-Merit.

Each test can be repeated a number of times, using the repeat option.
This helps to smooth over any variation in running time, so we'll set this to 3.

When a test is repeated, the overall score is some combination of the indi-
vidual test scores. As we're measuring running time, which is only increased
by any inaccuraccies (other programs running in the system), we want to
choose the minimum of the individual scores as the overall score for each
test. This is also set with the repeat option, and min is the default (the possi-
ble settings are: min, max, med or avg).

repeat = 3, min

#optimal = min_time

11

The [output] Section

The log option allows a log of the testing process to be created. If set, it gives
the filename of a . csv file which will list all tests performed. This log file can
be used to generate graphs of the testing process which will help us to explore
the effect that block size has on the program. We’'ll see how these logs can be

analysed later.

log = results/matrix_log.csv

There is one final option, script, which allows the output of the tuner to
be dumped into a ‘script’ file. This reduces the amount of output shown on

screen, so we won't use this for now.

matrix_tune.conf

1 # Autotuning System

2 #

3 # matrix_tune.conf

4 #

5 # Blocked Matrix Multiplication Tuning
6

7 [variables]

8

9 variables = BLOCK_I, BLOCK_J, BLOCK_K

12 [values]

14 BLOCK_I = 4, 8, 16, 32, 64
15 BLOCK_J = 4, 8, 16, 32, 64
16 BLOCK_K = 4, 8, 16, 32, 64

19 [testing]

21 compile = make -B BLOCK_I=%BLOCK_I BLOCK_J=%BLOCK_J% BLOCK_K=}%BLOCK_K%

23 test = ./matrix

24

25 #clean =

26

27

28 [scoring]

29

30 repeat = 3, min

31

32 #optimal = min_time
33

34

35 [output]

36

37 log = results/matrix_log.csv

Listing 4: The configuration file used for testing.

12

Running the Tuner

Now that we have prepared the program and written a configuration file, we're
ready to begin tuning.

Before you start, it is worth making a quick calculation of how long the
testing is likely to take. On my machine, with TEST_REP set to 5(the num-
ber of repetitions of the multiplication part of the program), running the pro-
gram takes around 11s. There are 3 variables with 5 possible values each, so
53 = 125 tests will be required. Each test runs the program 3 times, so the
tuning will take around 70 minutes in total, which is fine for our tuning. If
this is too long, you can reduce the number of possible values for the pa-
rameters, reduce the number of test repetitions or reduce the TEST_REP
variable within the program.

To begin testing, simply run the tuner, ~/Autotuning/autotune, with the
name of your configuration file as an argument. This will first output what
testing will be performed (the variables, their vales, and so on) and then begin
running tests. This will usually take some time, but you will be able to see the
tuner’s progress on screen as it runs tests.

Once all the tests have been run, the log files will be saved and the tuner
will tell you which setting of the parameters it found to be the best.

$ ~/Autotuning/autotune matrix_tune.conf

Autotuning System
v0.16

Retrieved settings from config file:

Variables:
BLOCK_I, BLOCK_J, BLOCK_K

Displayed as a tree:
{BLOCK_I, BLOCK_J, BLOCK_K}
Possible values:
BLOCK_I = [*4°, ’8°, °16°, °32’, ’64°]
BLOCK_J = [*4>, ’8°, °167, °32’, ’64°]

BLOCK_K = [’4°, ’8°, °16°, 232°, ’64’]

compile:
make -B BLOCK_I=}BLOCK_I% BLOCK_J=%BLOCK_J% BLOCK_K=VBLOCK_K%

test:

./matrix

Number of tests to be run: 125
(with 3 repetitions each)

Test 1:

13

The Results

Now the testing is done, it’s time to look at the results. The last few lines of out-
put from the tuner will tell you which parameter values resulted in the short-
est running time. In this case, the optimal valuation was to set BLOCK _I
and BLOCK_Jto64,and BLOCK_ K to 4.

Minimal valuation:

BLOCK_I = 64, BLOCK_J = 64, BLOCK_K = 4
Minimal Score:

9.95934987068

The system ran 125 tests, taking 75m47.83s.
A testing log was saved to ’matrix_log.csv’

$

This may be useful on its own, but we can get a better understanding of
how the parameters affect the program by looking at the log files. An extract
from the . csv log from my tuning is shown below.

TestNo BLOCK_I BLOCK_K BLOCK_J Score_1 Score_2 Score_3 Score_Overall

1 4 4 4 12.620 12.647 13.141 12.620

2 8 4 4 11.237 11.242 11.585 11.237

3 16 4 4 11.355 11.362 11.533 11.355

4 32 4 4 11.107 11.293 11.341 11.107

5 64 4 4 10.805 11.086 11.207 10.805

6 4 8 4 12.140 12.188 12.830 12.140

7 8 8 4 11.541 11.556 11.581 11.541
124 32 64 64 12.921 12.936 12.961 12.921
125 64 64 64 12.873 12.879 12.924 12.873

To produce a graph of the testing results, we use one of the tuner’s output
utilities to convert the .csv log into a gnuplot .plt script. This .plt file can
be edited by hand to alter the appearance of the graph, for example to change
the labels or colours. Then we can use the gnuplot plotting program to gen-
erate the graph. Some instructions are given at the top of the generated .plt
file, and here is what I did. The graph I generated is shown on Page 15. For
more information on gnuplot, see www.gnuplot.info.

$ ~/Autotuning/utilities/output_gnuplot.py matrix_log.csv matrix_log.plt
Reading ’matrix_log.csv’

Generating gnuplot script

Writing ’matrix_plot.plt’

Done

There are some instructions for generating a png at the top of the file.

$ gnuplot

gnuplot> set terminal png large size 1500, 1800

Terminal type set to ’png’

Options are ’nocrop font /usr/share/fonts/truetype/ttf-liberation/LiberationSans
-Regular.ttf 14 size 1500,1800 ?

gnuplot> set output ’./matrix_plot.png’

gnuplot> load ’./matrix_plot.plt’

gnuplot> exit

$

14

BLOCK_| Score

BLOCK_J

BLOCK_K

17

16

15

14

13

12

11

10

64
32
16

64
32
16

64
32
16

Tuning Results

o
%
e
3
E
x
x .) .
% x
i P 5
% x x %
x| LI % % 5o |
" s | e o L S b [T X
& fofl-d bel X| =
" ’ ¥ % 2 X
AR RARRNRRNANAARA AR AR ATARA AN AR AR RN AN AR AR AR RN ARARTIAR AT RRA AR AR
% % % % % * % % % % * % % % % % % % % % % % % % *
x x
x x
x x
x x
xxx% % X% x x50 % B 0% x
X3 %% X% x X500 % % - xxx% %
- xxx X% x X3 %% X3 %%
3% x xxxxx 3% X% x -
3002 % 2030 0000 200% % 200% %

HARKRRK KA KR KK KKK KKK KK RHKK

HRHEKRRHERKHRK KKK KKK RH KRR KK

30X KX KT K IR KR KK

309 KR X 0K KA A IR KK K XK

KRRKRRKKRH KKK KK KRR KRR KRR KK

15 20 25 30 35 40 45 50 55 60 65 70 s 80 85 90 95 100 105 110 115 120

5

10

Test No.

Figure 1: The graph of testing results, generated by gnuplot using matrix_plot.

plt

125

Analysis

The bottom half of the graph shows which tests were run. The test number
is shown along the x-axis, and the setting of each variable is shown on the
subgraphs. The top half of the graph shows the score for each test. The grey
bars show the overall score which is used to compare the tests, and the small
crosses show the individual scores from each repetition of the test.

The patterns in the graph allow us to clearly see how each variable af-
fects performace. Firstly, the graph has five distinct ‘sections’ or ‘steps’, which
corrspond to the changing values of BLOCK_K. It seems that 4, 8 and 16
were all quite good values, while 32 and 64 were significantly worse. Next, we
can see a ‘saw-tooth’ pattern within each section. These correspond to the
settings of BLOCK _J and seem to decrease as BLOCK _J increases, indi-
cating that high values are better. Finally, each peak and dip of the saw-tooth
pattern corresponds to varying BLOCK _I. Higher values of BLOCK _I also
seem to be best.

Further Tuning

The optimal results of both BLOCK_I and BLOCK_J were at the upper ex-
treme of the possible values we supplied. Also, there is a definite trend to-
wards higher values of these two variables being better. This could motivate
the idea to try another tuning run, but with even higher values of BLOCK _I
and BLOCK_J. For BLOCK_K, we might choose to tune a lower range of
values, or we might choose a wider, sparser range, to cover more possiblities
both higher and lower.

This type of additional run allows us to perform very detailed tuning, but
only on a very small part of the space of possible values. If we had tried to
perform the detailed tuning in the first place, there would have been far too
many tests. A coarse tuning gives enough information to intelligently choose
a more refined search.

16

Using a Custom Figure-of-Merit

The testing we performed timed the entire running of the program and used
this as the score for a test. In some cases, you will want to use some other
measurement as the score for a test. In our example, if we decided that the
program overheads were large compared to the part we wanted to time, we
could use a timer of only the multiplication part to provide the score.

To set this up, we would add timing code to our program, which timed
only the multiplication. In the configuration file, instead of using the option
optimal = min_time, we would use optimal = min. This tells the tuner that
you are going to provide the score yourself, so it will not time the entire exe-
cution. Instead, it will expect the score to be given as the last line of output of
the test. So for our example, we would print out the time taken by the multi-
plication as the last piece of output from the program. The tuner would then
read this and use it as a score.

When using a custom figure-of-merit like this, you are not restricted to
using running time at all. If you wanted to optimise the memory bandwidth,
or some other property, all you need to do is have your program measure it,
then output the score (as a float or integer) as the last line of output.

The User’s Guide contains more information about using a custom figure-
of-merit to tune other properties of a program than the overall running time.

The End

Hopefully this tutorial has shown you enough to let you begin tuning your
own programs. The main takeaway is to see how the tuning process works:
first modifying the program and build chain, then setting up a configuration
file, and finally running the tuner. It is important to be clear about how the
variables from the tuner will be passed from the tuner to the Makefile, then
to gce and finally to the program.

I have covered all but one of the program’s main features. I have not dis-
cussed Variable Independence at all, which allows you to reduce the number
of tests which need to be run. For more complex programs, the savings in
tuning time can be substantial.

For more information about the tuner and a more detailed description of
each option, you can look at the User’s Guide (doc/user.pdf). Alternatively,
try some of the other example programs included with the tuner (found in
examples/).

If you have any comments or questions on the tuner or this tutorial, please
feel free to get in touch.

17

	What You'll Need
	What We're Aiming For
	The Build Chain
	Modifying The Program
	Writing a Configuration File
	Running the Tuner
	The Results
	Using a Custom Figure-of-Merit
	The End

